过程分子生物学2 课件.ppt
- 【下载声明】
1. 本站全部试题类文档,若标题没写含答案,则无答案;标题注明含答案的文档,主观题也可能无答案。请谨慎下单,一旦售出,不予退换。
2. 本站全部PPT文档均不含视频和音频,PPT中出现的音频或视频标识(或文字)仅表示流程,实际无音频或视频文件。请谨慎下单,一旦售出,不予退换。
3. 本页资料《过程分子生物学2 课件.ppt》由用户(三亚风情)主动上传,其收益全归该用户。163文库仅提供信息存储空间,仅对该用户上传内容的表现方式做保护处理,对上传内容本身不做任何修改或编辑。 若此文所含内容侵犯了您的版权或隐私,请立即通知163文库(点击联系客服),我们立即给予删除!
4. 请根据预览情况,自愿下载本文。本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
5. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007及以上版本和PDF阅读器,压缩文件请下载最新的WinRAR软件解压。
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 过程分子生物学2 课件 过程 分子生物学
- 资源描述:
-
1、过程分子生物学523416基因的表达与调控细胞通讯的分子机制免疫多样性的分子识别胚胎发育的基因表达谱肿瘤发生的分子机制基因组学与系统生物学细胞通讯的分子机制EBCDAFG细胞通讯的基本概念水溶性物质的跨膜运输-物理传送 信号分子的跨膜传递-信号转导 G蛋白信号转导途径 JAK-STAT信号转导途径 TNF信号转导途径 TGF信号转导途径 HPI3K信号转导途径 I细胞分裂素信号转导途径 J信使系统的偶联与启动 2A 细胞通讯的基本概念 外界信号如何进入细胞,细胞又如何应答,这是分子生物学的一个基本命题,正在受到越来越多的重视。1992年的诺贝尔生理学奖授予了蛋白质可逆磷酸化的奠基人;1994年
2、则授予了GTP结合蛋白的发现者。响应环境并控制分子跨细胞质膜进出,是所有细胞的重要特征这一过程依靠定位于细胞质膜上的蛋白质。细胞质膜对水溶性的物质是不容渗透的,这些物质包括离子、无机物、多肽等。为了进入和影响细胞,亲水性的物质或者通过胞饮的方式进入细胞,或者与定位在细胞质膜上的蛋白质发生相互作用。2A 细胞通讯的基本概念 配体与受体、抗原与抗体,酶与底物是蛋白质之间特异性结合的三大系统。a 配体与受体 配体(Ligand)通常是指细胞外物质,不管是无机分子还是多肽,它们的共同特征是通过细胞质膜上的蛋白组分传递信号,故亦称为信号分子。受体(Receptor)是指细胞质膜上与配体特异性结合的靶蛋白
3、分子,有些受体本身还具有酶的催化功能。2A 细胞通讯的基本概念 物理扩散:脂溶性信号分子(脂溶性激素如甾体激素),可通过简单的物理扩散作用穿透质膜进入细胞内,并在细胞内或核内与其靶蛋白结合,发挥功能,无需细胞膜专一性受体。b 信号分子传递的基本形式 物理传送:水溶性信号分子,通过与细胞膜上的特异性受体系统结合,将之物理传送至细胞内。信号转导:大部分的水溶性信号分子,与细胞膜上的特异性受体结合,并触发细胞内的一系列响应过程。信号分子本身不进入细胞内,但在其与受体结合过程中产生的信号已进入胞内,并得以倍增,同时产生出新的信号分子,后者称为第二信使和第三信使。2B 水溶性物质的跨膜运输-物理传送 小
4、分子糖类物质与细胞质膜上的特异性受体结合,导致受体蛋白的构象发生改变,变构的受体蛋白将糖翻入细胞内。然后,配体脱离后的受体又转换成原来的构象。这一过程属于主动运输,需要消耗能量。a 翻转作用(糖)水溶性分子的主动运输糖分子糖分子翻转作用细胞膜细胞内细胞外细胞膜细胞内细胞外2B 水溶性物质的跨膜运输-物理传送 当配体与受体结合后,胞内的包含素蛋白分子便结合在受体附近的胞膜内侧,胞膜在包含素的作用下形成微囊泡结构,将配体受体复合物包裹起来并运至靶部位膜(如核膜等)。b 胞饮作用(受体介导的蛋白质胞饮)蛋白质分子的胞饮过程蛋白分子胞饮作用微囊泡包含素细胞膜细胞膜细胞膜受体配体复合物进入细胞后的命运
5、受体循环配体降解配体从微囊泡中被释放到核内体,发挥功能后,在溶酶体中被降解;受体则由微囊泡带到胞膜上循环使用。一个受体循环大约需1-20分钟,在细胞20小时的生命周期中可重复循环上百次。这一途径的经典例子是LDL受体,其配体为血浆低密度脂蛋白(LDL),它携带胆固醇或胆固醇酯。胆固醇从LDL上释放出来供细胞使用,LDL则被送到溶酶体中降解,而LDL受体则随微囊泡重新回到细胞膜上。受体配体复合物进入细胞后的命运 受体配体双循环铁传递蛋白受体是这一途径的一个经典案例。配体受体复合物进入核内体,酸性环境使铁传递蛋白释放出铁离子,这时配体仍与受体结合在一起,并双双随微囊泡传至胞膜上重复使用。配体一旦回
6、到膜上,遇到胞外的中性环境,便从受体上释放下来,重新进入循环,周期为15-20分钟,而受体的半衰期则大于30小时。受体配体复合物进入细胞后的命运 受体配体双降解这一途径的案例是表皮生长因子受体系统(EGF)。表皮生长因子系一小分子多肽,它与受体复合物被运至核内体中,EGF发挥功能后,与其受体双双进入溶酶体中被降解。受体配体复合物进入细胞后的命运 受体配体被转移受体与配体复合物被送至核内体中,配体释放,发挥功能后,又与其受体重新形成复合物(此时两者的空间结构已发生改变),该复合物再被转移至细胞膜的另一处。免疫球蛋白由受体横跨上皮胞细胞膜的传递即属此例。上述受体迅速循环机制一般只用于配体运输,而不
7、发生信号转导作用。用于信号转导的受体一般被降解。2B 水溶性物质的跨膜运输-物理传送 受体直接构成离子通道c 通道作用(离子通道)受体直接构成离子通道,而配体则控制离子通道的孔径及选择性。受体直接构成离子通道 钠离子通道乙酰胆碱是一种神经信号分子,它参与肌肉延伸收缩的调节作用。乙酰胆碱受体由五个亚基组成,形成配体控制的Na+通道。乙酰胆碱与受体结合后,受体a亚基构象改变,Na+迅速流入细胞内,导致细胞内外电压降减小在数微秒的时间内,肌肉细胞便会响应神经细胞的电压降脉冲,发生收缩运动。乙酰胆碱不存在时,通道关闭。每个亚基跨膜四次跨膜区内氨基酸的性质决定了通道的孔径及离子选择性。受体直接构成离子通
8、道 冷热离子通道 冷热离子通道能在低温或薄荷醇等外界物理或化学因素的刺激下打开。该离子通道响应15-25的温度范围,允许Na+和Ca2+离子进入传感神经元细胞并使之去极性化。口腔内的这种传感神经元将信号传递至大脑的三叉神经中枢(TG);皮肤上的这种传感神经元则将信号传递至脊锥索的脊根神经中枢(DRG)。此外,最近还鉴定出三种热传感器:第一种称为TRPV1型胡椒粉(辣椒素)热传感器,其敏感温度为43以上;第二种称为TRPV2型热传感器,其敏感温度为52以上;第三种称为TRPV3型温热传感器,其敏感温度范围在25-43之间。受体直接构成离子通道 冷热离子通道上述的冷热离子通道属于瞬时受体潜在型TR
9、P超家族,该家族的第一个成员是在果蝇光子受体细胞中发现的。哺乳动物TRP离子通道家族各成员之间的序列同源性甚低。它们可分成三大类:1 短通道TRPC;2 osm9样通道TRPV;3 长通道TRPM。所有TRPC和渗透压变化;在人类等高等哺乳动物中,TRPM通道负责感应味道,如甜苦等。NCTRP结构域 TRP盒锚蛋白重复序列TRPCNCTRPVNCTRPM成员的C端均含有一个TRP盒(Glu-Trp-Lys-Phe-Ala-Arg)和一个由25个氨基酸组成的功能未知的TRP结构域,但其它TRP通道成员一般没有类似结构。TRPC通道和TRPV通道的N端胞质功能域中含有锚蛋白重复序列,而TRPC通道
10、和TRPM通道的C端含有Pro丰富区。在果蝇中,TRPC型通道负责视觉,TRPV通道负责感应温度Pro丰富区受体通过信号传递控制离子通道 受体通过与GTP结合蛋白偶联,驱动离子通道开关。此类受体具有典型的七跨膜结构7TM,不论其配体性质如何。当配体(如激素)与受体结合后,由于其构象改变,激活GTP结合蛋白的核苷酸交换反应,GDPGTP。结合GTP的a亚基便与核苷酸环化酶结合,后者直接启动离子通道的开关。受体通过信号传递控制离子通道 视觉系统的信号传递机制 视网膜杆细胞中的视紫红质和视锥细胞中的视蛋白(颜色敏感)都是光量子的受体,实质上真正吸收光量子的分子是11-顺-视网膜素,它与受体第七跨膜区
11、的Lys共价结合。GTP结合蛋白将受体和磷酸二酯酶(PDE)偶联在一起,PDE负责水解cGMP,cGMP浓度下降导致离子通道关闭。离子浓度的改变信号由视觉神经传至大脑。光子促使受体构象发生变化,激活GTP结合型蛋白,后者又激活PDE。一个光子可激活数百个G蛋白分子,一个G蛋白分子又可激活PDE降解许多cGMP分子,从而完成信号的放大。受体通过信号传递控制离子通道 视觉系统的信号传递机制 在视蛋白中,吸收光量子的分子也是11-顺-视网膜素,但其共价结合区域内的氨基酸序列不同,导致每种视蛋白分子只有唯一的最大光吸收值。一个视锥细胞只表达单一的视蛋白,因此一个视锥细胞只能对一种波长的光敏感,这便是颜
12、色敏感的分子机制。受体通过信号传递控制离子通道 嗅觉系统的信号传递机制 气味分子与相应的受体结合,导致其构象发生改变,激活GTP结合蛋白,后者激活腺苷酸环化酶AC,由ATP合成cAMP。后者与离子通道结合并开启之,Na进入细胞,K流出细胞。电位差传至大脑。受体通过信号传递控制离子通道 嗅觉系统的信号传递机制 2004年的诺贝尔生理学或医学奖授于了美国科学家阿克塞尔和巴克。诺贝尔基金会为此发表的声明说:“嗅觉一直是人类感觉中最神秘的一种。我们过去无法理解人类辨认和记忆大约一万种不同气味的基本原理。而阿克塞尔和巴克却帮我们解答了这个问题,他们通过一系列具有开拓性的研究详细阐明了我们嗅觉系统的工作机
13、制。”1000个气味受体蛋白的编码基因。研究表明,每个嗅觉神经细胞只表 截止到目前为止,阿克塞尔和巴克领导的研究小组共发现了大约达一种气味受体蛋白,那么如何感应上万种不同的气味呢?2C 信号分子的跨膜传递-信号转导 许多水溶性信号分子本身不能直接进入细胞,但它们能与相应的膜蛋白受体特异性结合,进而在细胞质中引起一系列以磷酸化反应为主的级联响应,最终将信号传递到细胞核内。这一过程称为信号转导;信号传递的路线称为信号转导途径。2C 信号分子的跨膜传递-信号转导 信号转导途径的第一站是细胞外的信号分子(即配体)特异性地识别细胞膜上的受体蛋白,并与之结合;一旦结合了信号分子,受体空间构象就会发生变化。
14、这个过程称为第一次应答,共有三种表现形式。a 信号转导途径中的第一次应答反应 激活受体自身含有的蛋白激酶活性 这类受体的特征是:跨膜一次,由胞外区、跨膜区、胞内区三部分组成。胞外区是配体的结合位点;胞内区是受体自身的酪氨酸蛋白激酶活性区,也称为受体的顺式酶活性,通常这个活性部位由250个氨基酸组成。除此之外,这类受体的胞内区还可能含有丝氨酸/苏氨酸蛋白激酶活性,或者与鸟苷酸环化酶相连。根据胞内区的酶活性质不同,可将这类受体分为四大家族。激活受体自身含有的蛋白激酶活性 当配体与受体结合后,受体空间结构发生变化,这是蛋白激酶发挥催化功能的前提条件,共有三种形式的构象变化。配体结合导致单体二聚化配体
15、连接两个单体配体连接导致构像改变激活细胞质内的蛋白激酶活性 这类受体的特征是:跨膜一次,胞外区与配体结合,关键序列为WSXWS;膜内区不含蛋白激酶的功能域,但在近膜处存在着细胞内蛋白激酶家族的结合区域。当配体与受体结合后,构象发生改变,受体与细胞质内蛋白激酶特异性结合,并激活这些蛋白激酶的磷酸化活性。如T-淋巴细胞的CD4受体在与配体结合后,便能特异性地与细胞内的Lck蛋白激酶结合,并激活之。激活结合在细胞膜内侧上的G蛋白 这些受体的特征是:跨膜七次(7MT)。G蛋白是一种GTP/GDP结合型蛋白,位于受体附近的膜内侧上。其无活性状态是一个结合GDP的三聚体(a a、b b、g g),一旦受体
16、与配体结合,受体构象发生改变,导致GDP为GTP所取代,这时G蛋白解离成一个携带GTP的亚基(a a)和一个二聚体(b gb g)。单聚体或/和二聚体再去激活其它的靶蛋白,引起一连串级联反应,通常情况下,最终刺激产生第二信使分子cAMP,离子通道的调节便是一例。2C 信号分子的跨膜传递-信号转导 细胞外的信号分子(配体)特异性识别和结合细胞膜上的受体蛋白之后,受体产生第一次应答反应,继而便将信号通过三种方式在胞质中传递。b 细胞质中信号转导的基本形式转录调控因子直接穿过胞质到达细胞核 有些转录调控因子能直接被配体-受体复合物激活,并穿过胞质进入细胞核。受体被配体激活后做出的第一次应答反应就是将
17、潜伏在胞质内受体附近的无活转录调控因子召集到自己的身边,然后将之激活。具有这种性质 的 转 录 调 控 因 子 包 括SMAD家族和STAT家族的各成员,其中SMAD家族在其Ser残基上被受体磷酸化激活而STAT家族则在其Tyr残基上被受体磷酸化激活。信号通过脚手架蛋白逐次传递至细胞核 在相当多的信号转导途径中,被配体激活的受体将信号逐次传递给下游脚手架蛋白(驿站蛋白)构成一系列的级联反应。此时,信号的载体是磷酸基团,信号传递的形式是磷酸化反应或/和蛋白质降解反应,但许多蛋白质降解步骤也是受磷酸化反应控制的。以此机制进行信号 转 导 的 包 括:N F-kB/Rel、Wnt、CI/GLI、No
18、tch、Ras信号转导途径径 信号通过第二信使分子传递至细胞核 在有些信号转导途径中被配体激活的受体可导致细胞质内第二信使分子浓度的波动,并依赖这些小分子或离子在胞质中的扩散作用将信号传递至细胞核。具有上述功能的第二信使分子包括Ca2+和磷酸肌醇酯(PIP)等。以此机制进行信号转导的有:NFAT和PLC等信号转导途径等。2C 信号分子的跨膜传递-信号转导 在某些信号转导途径中,由配体-受体相互作用所产生的信号被传递到细胞核外侧后,还需要通过下列三种方式进入核内,进而作用于相关基因的调控区,促进 靶基因的转录。c 细胞核中信号转导的基本形式激酶转位作用 运载信号的蛋白激酶直接进入细胞核内,并在核
19、内使相应的转录调控因子磷酸化激活,调控靶基因的表达。因子转位作用 运载信号的蛋白激酶在细胞核外侧使相应的转录调控因子磷酸化激活,后者再进入核内调控靶基因的表达。抑制剂释放作用 运载信号的蛋白激酶在细胞核外侧使转录调控因子-抑制剂复合物磷酸化,促使其释放转录调控因子,后者再进入核内调控靶基因的表达。2D G蛋白信号转导途径 异源三聚体GTP/GDP结合蛋白(G蛋白)是一类固定在细胞质膜内表面上的信号转导子,它联结受体和脚手架因子,构成细胞内信号转导途径。与G蛋白相偶联的受体能响应大量的激素、神经递质、趋化因子、自分泌和旁分泌因子。G蛋白由三个不同的亚基a a、b b、g g构成,但当信号转导时,
20、它们是以单亚基或二聚体的形式工作的,即信号传递或者通过Ga a亚基或者通过Gbgbg复合物进行目前已知的G蛋白亚基分别为Ga a 20种、Gb b 6种、Gg g 11种。2D G蛋白信号转导途径 根据序列相似性,G蛋白可分为四个家族:Gs、Gi/Go、Gq/G11、G12/G13。这四大G蛋白家族能转导数量众多的胞外信号分子。同一种信号分子结合不同的受体,可将信号传递给不同的G蛋白家族。例如,肾上腺素信号分子通过b b-肾上腺素受体将信号传递到与受体偶联在一起的Gs上;通过a a2-肾上腺素受体被传递到Gi上;通过a a1 1-肾上腺素受体则被传递到Gq和G11上。然后,各类G蛋白再通过不同
21、的信号转导途径调控重要的细胞组分,包括代谢酶类、离子通道以及相应的转录机器,这些细胞组分的运行和反应决定了细胞的行为和功能,如胚胎发育、学习记忆、稳态建立等。a G蛋白信号转导途径的基本特征 G蛋白四大家族的信号转导网络2D G蛋白信号转导途径b G蛋白信号转导途径的构成与功能 所有的G蛋白都参与多重信号转导途径的构成和运行,最终将信号传递至不同的细胞机器上,形成响应速率和作用强度各不相同的生理效应。例如,在神经元细胞中,cAMP可通过PKA对离子通道实施短期效应;同时通过Rap和MAPK对转录机器实施长期影响。所有的G蛋白都调控GTP酶(如Rap和Rho等)的活性。所有的G蛋白途径或刺激或抑
22、制一条或多条由MAPK介导的分支途径。Gs信号转导途径 Gs途径是最早被鉴定的细胞信号转导途径,许多关键的概念,如第二信使、蛋白磷酸化、信号转导等就是来自于该途径的研究。即便经历了近二十年的研究,Gs途径的新知识仍在不断地增加。Gs途径的关键效应分子是cAMP。信号分子(如肾上腺素和糖原等)与相应的受体结合后,激活Gs的a a亚基,后者激活腺嘌呤核苷酸环化酶AC合成cAMP。cAMP有三大功能:(1)直接开启CNGC离子通道;(2)激活蛋白激酶PKA,后者即可开启L-型Ca2+离子通道,又可依次激活磷酸化酶激酶PhosK和糖原磷酸化酶GlyPhos,导致糖原降解为葡萄糖;(3)依次激活GTP/
23、GDP交换因子EPAC、GTP酶Rap1有丝分裂原激活的蛋白激酶的激酶的激酶B-Raf、有丝分裂原激活的蛋白激酶的激酶MEK、有丝分裂原激活的蛋白激酶MAPK,后者进入核内激活cAMP应答元件结合蛋白CREB,活化的CREB再与相关基因的 转录调控元件CRE结合,促进这些基因的转录。Gs信号转导途径配体-受体Gs aACcAMPPKAEPAC CNGCCREBCRE质膜核膜PDE降解Gi信号转导途径 Gi信号转导途径的主要特征是其Ga能抑制AC的活性。许多重要的激素和神经递质,如肾上腺素、乙酰胆碱、多巴胺、5-羟色胺等,都能利用Gi和Go途径转导信号。该途径为百日咳毒素所抑制,其机制是百日咳毒
24、素在G蛋白a亚基C端的区域内使其ADP核苷酰化,从而阻止a亚基与相应的受体相互作用。在Gi途径中,Ga亚基和Gbg复合物均能单独传递信号。例如,Gbg复合物至少能与四种效应因子直接偶联,间接偶联Ras蛋白中的GTP酶活性,进而激活MAPK。一些重要的生理功能(心脏起博活性)的毒覃碱性胆碱调控过程,就是通过M2-毒覃碱性受体与Gi蛋白偶联,释放出Gbg复合物,再由后者激活K+离子通道而实现的。Ga则能调控信号从c-Src到STAT3途径和Rap途径的传递,也能抑制AC的活性。Gq信号转导途径 Gq信号转导途径的主要特征是被钙质动用激素激活,并刺激细胞合成第二信使分子三磷酸肌醇(IP3)和二酰基甘
25、油(DAG)。IP3触发钙质从胞内钙库中的释放,而DAG则负责召集PKC到膜上并激活之。在很多类型的细胞中,胞内钙质的释放能激活细胞表面上钙库操纵的Ca2+通道,导致胞外的Ca2+流入胞内。Gq的a亚基则能通过蛋白酪氨酸激酶PYK2激活转录调控因子NF-kB。2D G蛋白信号转导途径c Ras信号转导途径 很多生长因子激活相应的受体后,通过效应分子活化由原癌基因ras编码的Ras蛋白,后者又依次激活其下游脚手架因子,最终作用于靶基因的表达。Ras蛋白为多种生长因子信号传递过程所共有,而且本身也是G蛋白家族的一个成员,构成一条独立的信号转导途径。Ras信号转导途径中的脚手架蛋白包括:Ras蛋白、
展开阅读全文