书签 分享 收藏 举报 版权申诉 / 66
上传文档赚钱

类型行人再识别的若干问题课件.pptx

  • 上传人(卖家):三亚风情
  • 文档编号:3481280
  • 上传时间:2022-09-05
  • 格式:PPTX
  • 页数:66
  • 大小:7.76MB
  • 【下载声明】
    1. 本站全部试题类文档,若标题没写含答案,则无答案;标题注明含答案的文档,主观题也可能无答案。请谨慎下单,一旦售出,不予退换。
    2. 本站全部PPT文档均不含视频和音频,PPT中出现的音频或视频标识(或文字)仅表示流程,实际无音频或视频文件。请谨慎下单,一旦售出,不予退换。
    3. 本页资料《行人再识别的若干问题课件.pptx》由用户(三亚风情)主动上传,其收益全归该用户。163文库仅提供信息存储空间,仅对该用户上传内容的表现方式做保护处理,对上传内容本身不做任何修改或编辑。 若此文所含内容侵犯了您的版权或隐私,请立即通知163文库(点击联系客服),我们立即给予删除!
    4. 请根据预览情况,自愿下载本文。本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
    5. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007及以上版本和PDF阅读器,压缩文件请下载最新的WinRAR软件解压。
    配套讲稿:

    如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。

    特殊限制:

    部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。

    关 键  词:
    行人 识别 若干问题 课件
    资源描述:

    1、Person Re-identification:Recent Challenges1My Research2Human Identification&Activity Understandingq BackgroundThe whole story1Detect an event2track persons across camera view3Identify who he/she is3Human Identification&Activity Understandingq BackgroundActivityPerson Re-identificationFaceRecognition

    2、Person Re-identificationWhat ishedoing?Matching,TrackingCamera NetworkUnderstandingDetecting target objects(cars,pedestrian,bags etc.)5Person Re-identification6Recent Development&QuestionPose-guided,Local,Attention-based,GAN-based,a ppt:https:/ should we do?I would guess we will soon have 99%matchin

    3、g rate this year or early next year on benchmarksqHave we already solved it?q7My Todays FocusTell less about performanceqAim to tell something of my understandingabout Re-IDq8Person Re-identification:Challenges9Person Re-identification:Challengesq Some Main VariationsView Lighting Occlusion Low Reso

    4、lution Clothing Change101.Connection with Cross Domain?11Person Re-ID vs.Cross-ModalityView Biasq12Asymmetric Metric for Re-IDLearning universal featuretransformationLearning view-specificfeature transformation13Asymmetric Metric for Re-IDLearn different featuretransformation for differentcamera vie

    5、wsPseudometricNon-negativity SymmetryTriangle InequalityCoincidence14Asymmetric Metric for Re-IDq Re-ID Reformulation by AugmentationView-specifictransformationYingcong Chen,Xiatian Zhu,Wei-Shi Zheng*,and Jian-Huang Lai.Person Re-Identificationby Camera Correlation Aware Feature Augmentation.IEEE Tr

    6、ans.on Pattern Analysis andMachine Intelligence(PAMI),2017.15Asymmetric Metric for Re-IDq Re-ID Reformulation by AugmentationNot able to measure the relationshipbetween different view-specifictransformation matricesView-specifictransformationDo not constraint the discrepancybetween feature transform

    7、ation acrossview:CoincidenceYingcong Chen,Xiatian Zhu,Wei-Shi Zheng*,and Jian-Huang Lai.Person Re-Identificationby Camera Correlation Aware Feature Augmentation.IEEE Trans.on Pattern Analysis andMachine Intelligence(PAMI),2017.16Asymmetric Metric for Re-IDAdaptive feature augmentationqgeneralisedcon

    8、trol thediscrepancyBetweenfa and fbYingcong Chen,Xiatian Zhu,Wei-Shi Zheng*,and Jian-Huang Lai.Person Re-Identificationby Camera Correlation Aware Feature Augmentation.IEEE Trans.on Pattern Analysis andMachine Intelligence(PAMI),2017.17Asymmetric Metric for Re-IDLearning:qCamera coRrelation Aware Fe

    9、ature augmenTation(CRAFT)Generalize any symmetric metric learning models to asymmetricones:e.g.MFA18Asymmetric Metric for Re-IDLearning:qCamera coRrelation Aware Feature augmenTation(CRAFT)Camera ViewDiscrepancyRegularization:ReduceCoincidenceBregman discrepancy of a projection19Asymmetric Metric fo

    10、r Re-IDA frameworkqto extractdomain-genericand more viewinvariant personfeatures20Asymmetric Metric for Re-IDEvaluation:augmentation or not augmentation?qEvaluation:augmentation vs.domain adaptationqqEvaluation:whether using Camera View Discrepancy21Does the Asymmetric Metric Modelling Workfor other

    11、 setting:unsupervised,semi-supervised,.22Asymmetric Metric for Re-ID:UnsupervisedUnsupervised Learningqo Clustering-based Asymmetric MEtric Learning(CAMEL)Hongxing Yu,Ancong Wu,Wei-Shi Zheng*.-Learning for Unsupervised Person Re-identification.In IEEE Conf.on ComputerVision(ICCV),2017.23Asymmetric M

    12、etric for Re-ID:UnsupervisedUnsupervised Learningq24Hash Re-ID for Fast SearchFAST Re-ID on Numbers of Camerasqo Learning view-specific hash code for each cameraXiatian Zhu,Botong Wu,Dongcheng Huang,Wei-Shi Zheng*(PI)Identification.IEEE Transactions on Image Processing,2017.Fast Open-World Person Re

    13、-Wei-Shi Zheng,Shaogang Gong,and Tao Xiang.Towards Open-World Person Re-Identificationby One-Shot Group-based Verification.IEEE Transactions on Pattern Analysis and MachineIntelligence(PAMI),vol.38,no.3,pp.591-606,2016.25Hash Re-ID for Fast SearchIdea of the FormulationqCross-view IdentityVerificati

    14、on RegularisationCross-view IdentityCorrelation HashingView Context DiscrepancyRegularisation26Hash Re-ID for Fast SearchFAST Searchqo Comparison to other related Hashing functions27Hash Re-ID for Fast SearchFAST Searchqo When using more powerful features?282.How to match heterogeneousperson images

    15、across camera views?29Person Re-ID vs.Cross-ModalityMatching between Heterogeneous Imagesq30RGB-Infrared Re-IDCross-Modality Learning:RGB-IR Re-IDqo Deep zero-paddingAncong Wu,Wei-Shi Zheng*(PI),Hongxing Yu,Shaogang Gong,Jianhuang Lai.RGB-InfraredCross-Modality Person Re-Identification.In IEEE Conf.

    16、on Computer Vision(ICCV),2017.31RGB-Infrared Re-IDCross-Modality Learning:RGB-IR Re-IDq32RGB-Infrared Re-IDCross-Modality Learning:RGB-IR Re-IDq33RGB-Infrared Re-IDCross-Modality Learning:RGB-IR Re-IDqo SYSU RGB-IR Re-ID Dataset34When the input is not image?35Attribute-Image Person Re-IDMatch person

    17、 images with specific attributedescriptions in surveillance environment.qZhou Yin,Wei-Shi Zheng*(PI),et al.Adversarial Attribute-Image Person Re-identification,IJCAI 201836Attribute-Image Person Re-IDIntuitively,when we hold some attribute description in mind,e.g.,qq“carrying backpack”,we generate a

    18、n obscure and vagueimagination on how a backpack may look like,which we refer to asa concept.We model this generation process and match the generatedconcepts with image perceptions.37Attribute-Image Person Re-IDImage Concept Extraction loss:Our model learns a semanticallyqq!discriminative structure

    19、of low-level person images.Semantic Consistency Constraint+Adversary loss:Our model!#$%generates the corresponding aligned image-analogous concept forhigh-level attribute.38Attribute-Image Person Re-IDOur model:Outperforms traditional cross modality retrieval methods(DeepCCAE,DeepCCA,2WayNet,CMCE).q

    20、Outperforms classical pedestrian attribute recognition model(DeepMAR).Outperforms other variants of our model,which also generate homogenous distributions undersemantic consistency regularization for the two modalities(MMD,DeepCoral).qq39Attribute-Image Person Re-IDWrong samples40Attribute-Image Per

    21、son Re-IDEffects of different generation strategies:Generation from attributes to image is better than generation fromqqimage to attributes.(A2Img vs.Img2A):Estimating the manifold of images from the training data is more reliable thanestimating that of attributesoGeneration in feature space is bett

    22、er than generation in real imagespace.(A2Img vs.Real Images):Generating real pedestrian image is difficult.Generating noisy low-level imagesand then eliminating these noise to extract discriminative concepts is notnecessaryo41When dressing differently?42Depth Re-IDSomething to seeqIlluminationchange

    23、ClotheschangeIn these cases,appearance cues are not reliable.43Depth Re-IDDepth descriptorsq Within-patch Covariance Between-patch Covariance Eigen-depth featureEigen-depth feature is rotation invariant.44Depth Re-IDMetricqxixjOExtracting Eigen-depth feature converts covariance matrices onRiemannian

    24、 manifold to feature vectors in Euclidean space.45Depth Re-ID46Depth Re-IDTransferring Depthq()Ancong Wu,Wei-Shi Zheng*(PI),and Jian-HuangLai.Robust Depth-based Person Re-identification.IEEE Transactions on Image Processing,2017Depth Re-ID483.Low-resolutionPerson Re-identificationVaryingResolutionsC

    25、amera ACamera B49Low-resolution Re-ID50Low-resolution Re-IDLow-resolution Re-IDqo JUDEA:joint multi-scale discriminant componentanalysisXiang Li,Wei-Shi Zheng*,Xiaojuan Wang,Tao Xiang,Shaogang Gong.Multi-scale(PI)Learning for Low-resolution Person Re-identification.IEEE Conf.on Computer Vision(ICCV)

    26、,2015.51Low-resolution Re-IDq Super-resolution and Identity joiNt learninG(SING)Jiening Jiao,Wei-Shi Zheng*(PI),Ancong Wu,Xiatian Zhu,and Shaogang Gong.Deep Low-resolution Person Re-identification.AAAI 201852Low-resolution Re-ID53Low-resolution Re-IDResultsq54Low-resolution Re-IDResultsq55More 56Cro

    27、ss-set Re-IDGalleryProbeLabelling images across camera views is costly57Cross-scenario Re-IDTransferring between setsAnqAsymmetricMulti-taskModellingXiaojuan Wang,Wei-Shi Zheng*(PI),Xiang Li,and Jianguo Zhang.Cross-scenario Transfer Person Re-identification.IEEE Transactions on Circuits and Systems

    28、for Video Technology,vol.26,no.8,pp.1447-1460,2016.58Partial Re-ID59Partial Re-IDAnnotating PartialPart by Operatoror Detecting itautomaticallyLocal-to-localMatchingMatchingFusionWei-Shi Zheng,Xiang Li,Tao Xiang,Shengcai Liao,JianHuang Lai,ShaogangGong.Partial Person Re-identification.ICCV,2015.Glob

    29、al-to-localMatching60Partial Re-IDExample of partial person matching61One-Shot Open-World Group-based Re-idMotivationqOpe world personr identification setting1)A large amount of non-targetimposters captured alongwith the target people on thewatch list.2)Their images will also appearin the probe set

    30、and some ofthem will look visually similarto the target peopleWei-Shi Zheng,Shaogang Gong,and Tao Xiang.Towards Open-World Person Re-Identification by One-Shot Group-based Verification.IEEE Transactions on PatternAnalysis and Machine Intelligence(PAMI),vol.38,no.3,pp.591-606,2016.62One-Shot Open-Wor

    31、ld Group-based Re-idKnowledge to transferqEnrich intr class variationApproximate target intra-inter class pair(magenta line and green line)Enrich inte class variationTarget specific non-target intra-inter classpair(magenta line and yellow line)Enrich group separationGroup separation intra-inter clas

    32、s pair(green line and grey line)63MoreLingxiao He,et al.,CVPR 2018.S.Li et al.,CVPR 2017Weijian Deng,et al,.CVPR,2018.Longhui Wei,et al,.CVPR,2018.64SummaryConnection with Machine Learning forCross Modalities/Cross DomainsAsymmetricHash Re-IDPartial Re-IDAttribute-Metric LearningImage Re-IDUnsupervisedRe-IDRGB-InfraredRe-IDDepth Re-IDCross-scenarioRe-IDLow-resolution Re-IDOpen-world Re-IDPerson Re-identification65Thanks to my studentshttp:/ MEwszhengieee.org66

    展开阅读全文
    提示  163文库所有资源均是用户自行上传分享,仅供网友学习交流,未经上传用户书面授权,请勿作他用。
    关于本文
    本文标题:行人再识别的若干问题课件.pptx
    链接地址:https://www.163wenku.com/p-3481280.html

    Copyright@ 2017-2037 Www.163WenKu.Com  网站版权所有  |  资源地图   
    IPC备案号:蜀ICP备2021032737号  | 川公网安备 51099002000191号


    侵权投诉QQ:3464097650  资料上传QQ:3464097650
       


    【声明】本站为“文档C2C交易模式”,即用户上传的文档直接卖给(下载)用户,本站只是网络空间服务平台,本站所有原创文档下载所得归上传人所有,如您发现上传作品侵犯了您的版权,请立刻联系我们并提供证据,我们将在3个工作日内予以改正。

    163文库