行人再识别的若干问题课件.pptx
- 【下载声明】
1. 本站全部试题类文档,若标题没写含答案,则无答案;标题注明含答案的文档,主观题也可能无答案。请谨慎下单,一旦售出,不予退换。
2. 本站全部PPT文档均不含视频和音频,PPT中出现的音频或视频标识(或文字)仅表示流程,实际无音频或视频文件。请谨慎下单,一旦售出,不予退换。
3. 本页资料《行人再识别的若干问题课件.pptx》由用户(三亚风情)主动上传,其收益全归该用户。163文库仅提供信息存储空间,仅对该用户上传内容的表现方式做保护处理,对上传内容本身不做任何修改或编辑。 若此文所含内容侵犯了您的版权或隐私,请立即通知163文库(点击联系客服),我们立即给予删除!
4. 请根据预览情况,自愿下载本文。本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
5. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007及以上版本和PDF阅读器,压缩文件请下载最新的WinRAR软件解压。
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 行人 识别 若干问题 课件
- 资源描述:
-
1、Person Re-identification:Recent Challenges1My Research2Human Identification&Activity Understandingq BackgroundThe whole story1Detect an event2track persons across camera view3Identify who he/she is3Human Identification&Activity Understandingq BackgroundActivityPerson Re-identificationFaceRecognition
2、Person Re-identificationWhat ishedoing?Matching,TrackingCamera NetworkUnderstandingDetecting target objects(cars,pedestrian,bags etc.)5Person Re-identification6Recent Development&QuestionPose-guided,Local,Attention-based,GAN-based,a ppt:https:/ should we do?I would guess we will soon have 99%matchin
3、g rate this year or early next year on benchmarksqHave we already solved it?q7My Todays FocusTell less about performanceqAim to tell something of my understandingabout Re-IDq8Person Re-identification:Challenges9Person Re-identification:Challengesq Some Main VariationsView Lighting Occlusion Low Reso
4、lution Clothing Change101.Connection with Cross Domain?11Person Re-ID vs.Cross-ModalityView Biasq12Asymmetric Metric for Re-IDLearning universal featuretransformationLearning view-specificfeature transformation13Asymmetric Metric for Re-IDLearn different featuretransformation for differentcamera vie
5、wsPseudometricNon-negativity SymmetryTriangle InequalityCoincidence14Asymmetric Metric for Re-IDq Re-ID Reformulation by AugmentationView-specifictransformationYingcong Chen,Xiatian Zhu,Wei-Shi Zheng*,and Jian-Huang Lai.Person Re-Identificationby Camera Correlation Aware Feature Augmentation.IEEE Tr
6、ans.on Pattern Analysis andMachine Intelligence(PAMI),2017.15Asymmetric Metric for Re-IDq Re-ID Reformulation by AugmentationNot able to measure the relationshipbetween different view-specifictransformation matricesView-specifictransformationDo not constraint the discrepancybetween feature transform
7、ation acrossview:CoincidenceYingcong Chen,Xiatian Zhu,Wei-Shi Zheng*,and Jian-Huang Lai.Person Re-Identificationby Camera Correlation Aware Feature Augmentation.IEEE Trans.on Pattern Analysis andMachine Intelligence(PAMI),2017.16Asymmetric Metric for Re-IDAdaptive feature augmentationqgeneralisedcon
8、trol thediscrepancyBetweenfa and fbYingcong Chen,Xiatian Zhu,Wei-Shi Zheng*,and Jian-Huang Lai.Person Re-Identificationby Camera Correlation Aware Feature Augmentation.IEEE Trans.on Pattern Analysis andMachine Intelligence(PAMI),2017.17Asymmetric Metric for Re-IDLearning:qCamera coRrelation Aware Fe
9、ature augmenTation(CRAFT)Generalize any symmetric metric learning models to asymmetricones:e.g.MFA18Asymmetric Metric for Re-IDLearning:qCamera coRrelation Aware Feature augmenTation(CRAFT)Camera ViewDiscrepancyRegularization:ReduceCoincidenceBregman discrepancy of a projection19Asymmetric Metric fo
10、r Re-IDA frameworkqto extractdomain-genericand more viewinvariant personfeatures20Asymmetric Metric for Re-IDEvaluation:augmentation or not augmentation?qEvaluation:augmentation vs.domain adaptationqqEvaluation:whether using Camera View Discrepancy21Does the Asymmetric Metric Modelling Workfor other
11、 setting:unsupervised,semi-supervised,.22Asymmetric Metric for Re-ID:UnsupervisedUnsupervised Learningqo Clustering-based Asymmetric MEtric Learning(CAMEL)Hongxing Yu,Ancong Wu,Wei-Shi Zheng*.-Learning for Unsupervised Person Re-identification.In IEEE Conf.on ComputerVision(ICCV),2017.23Asymmetric M
12、etric for Re-ID:UnsupervisedUnsupervised Learningq24Hash Re-ID for Fast SearchFAST Re-ID on Numbers of Camerasqo Learning view-specific hash code for each cameraXiatian Zhu,Botong Wu,Dongcheng Huang,Wei-Shi Zheng*(PI)Identification.IEEE Transactions on Image Processing,2017.Fast Open-World Person Re
13、-Wei-Shi Zheng,Shaogang Gong,and Tao Xiang.Towards Open-World Person Re-Identificationby One-Shot Group-based Verification.IEEE Transactions on Pattern Analysis and MachineIntelligence(PAMI),vol.38,no.3,pp.591-606,2016.25Hash Re-ID for Fast SearchIdea of the FormulationqCross-view IdentityVerificati
14、on RegularisationCross-view IdentityCorrelation HashingView Context DiscrepancyRegularisation26Hash Re-ID for Fast SearchFAST Searchqo Comparison to other related Hashing functions27Hash Re-ID for Fast SearchFAST Searchqo When using more powerful features?282.How to match heterogeneousperson images
15、across camera views?29Person Re-ID vs.Cross-ModalityMatching between Heterogeneous Imagesq30RGB-Infrared Re-IDCross-Modality Learning:RGB-IR Re-IDqo Deep zero-paddingAncong Wu,Wei-Shi Zheng*(PI),Hongxing Yu,Shaogang Gong,Jianhuang Lai.RGB-InfraredCross-Modality Person Re-Identification.In IEEE Conf.
16、on Computer Vision(ICCV),2017.31RGB-Infrared Re-IDCross-Modality Learning:RGB-IR Re-IDq32RGB-Infrared Re-IDCross-Modality Learning:RGB-IR Re-IDq33RGB-Infrared Re-IDCross-Modality Learning:RGB-IR Re-IDqo SYSU RGB-IR Re-ID Dataset34When the input is not image?35Attribute-Image Person Re-IDMatch person
展开阅读全文