高等数学课件完整版详细课件.ppt
- 【下载声明】
1. 本站全部试题类文档,若标题没写含答案,则无答案;标题注明含答案的文档,主观题也可能无答案。请谨慎下单,一旦售出,不予退换。
2. 本站全部PPT文档均不含视频和音频,PPT中出现的音频或视频标识(或文字)仅表示流程,实际无音频或视频文件。请谨慎下单,一旦售出,不予退换。
3. 本页资料《高等数学课件完整版详细课件.ppt》由用户(三亚风情)主动上传,其收益全归该用户。163文库仅提供信息存储空间,仅对该用户上传内容的表现方式做保护处理,对上传内容本身不做任何修改或编辑。 若此文所含内容侵犯了您的版权或隐私,请立即通知163文库(点击联系客服),我们立即给予删除!
4. 请根据预览情况,自愿下载本文。本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
5. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007及以上版本和PDF阅读器,压缩文件请下载最新的WinRAR软件解压。
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 高等数学 课件 完整版 详细
- 资源描述:
-
1、例例 xxcossin xsin是是xcos的的原原函函数数.)0(1ln xxxxln是是x1在区间在区间),0(内的原函数内的原函数.如果在区间如果在区间I内,内,定义:定义:可可导导函函数数)(xF的的即即Ix ,都都有有)()(xfxF 或或dxxfxdF)()(,那那么么函函数数)(xF就就称称为为)(xf导函数为导函数为)(xf,或或dxxf)(在在区区间间I内内原原函函数数.一、原函数与不定积分的概念一、原函数与不定积分的概念原函数存在定理:原函数存在定理:如果函数如果函数)(xf在区间在区间I内连续,内连续,简言之:简言之:连续函数一定有原函数连续函数一定有原函数.问题:问题:
2、(1)原函数是否唯一?原函数是否唯一?例例 xxcossin xCxcossin (为任意常数)为任意常数)C使使Ix ,都有,都有)()(xfxF .(2)若不唯一它们之间有什么联系?若不唯一它们之间有什么联系?关于原函数的说明:关于原函数的说明:(1)若)若 ,则对于任意常数,则对于任意常数 ,)()(xfxF CCxF)(都都是是)(xf的的原原函函数数.(2)若)若 和和 都是都是 的原函数,的原函数,)(xF)(xG)(xf则则CxGxF )()((为任意常数)为任意常数)C证证 )()()()(xGxFxGxF 0)()(xfxfCxGxF )()((为任意常数)为任意常数)C任意
3、常数任意常数积分号积分号被积函数被积函数不定积分的定义:不定积分的定义:在在区区间间I内内,CxFdxxf )()(被积表达式被积表达式积分变量积分变量函函数数)(xf的的带带有有任任意意常数项的原函数常数项的原函数称称为为)(xf在在区区间间I内内的的不定积分不定积分,记为,记为 dxxf)(.例例1 1 求求.5dxx 解解,656xx .665Cxdxx 解解例例2 2 求求.112 dxx ,11arctan2xx .arctan112 Cxdxx例例3 3 设曲线通过点(设曲线通过点(1,2),且其上任一点处的),且其上任一点处的切线斜率等于这点横坐标的两倍,求此曲线方程切线斜率等于
4、这点横坐标的两倍,求此曲线方程.解解设曲线方程为设曲线方程为),(xfy 根据题意知根据题意知,2xdxdy 即即)(xf是是x2的一个原函数的一个原函数.,22 Cxxdx,)(2Cxxf 由曲线通过点(由曲线通过点(1,2),1 C所求曲线方程为所求曲线方程为.12 xy函函数数)(xf的的原原函函数数的的图图形形称称为为)(xf的的积积分分曲曲线线.显然,求不定积分得到一积分曲线族显然,求不定积分得到一积分曲线族.由不定积分的定义,可知由不定积分的定义,可知 ),()(xfdxxfdxd ,)()(dxxfdxxfd ,)()(CxFdxxF.)()(CxFxdF结论:结论:微分运算与求
5、不定积分的运算是微分运算与求不定积分的运算是的的.实例实例 xx 11.11Cxdxx 启示启示能否根据求导公式得出积分公式?能否根据求导公式得出积分公式?结论结论既然积分运算和微分运算是互逆的,既然积分运算和微分运算是互逆的,因此可以根据求导公式得出积分公式因此可以根据求导公式得出积分公式.)1(二、二、基本积分表基本积分表基基本本积积分分表表 kCkxkdx()1(是常数是常数););1(1)2(1 Cxdxx;ln)3(Cxxdx说明:说明:,0 x,ln Cxxdx )ln(,0 xx,1)(1xxx ,)ln(Cxxdx,|ln Cxxdx简写为简写为.ln Cxxdx dxx211
6、)4(;arctanCx dxx211)5(;arcsinCx xdxcos)6(;sinCx xdxsin)7(;cosCx xdx2cos)8(xdx2sec;tanCx xdx2sin)9(xdx2csc;cotCx xdxxtansec)10(;secCx xdxxcotcsc)11(;cscCx dxex)12(;Cex dxax)13(;lnCaax xdxsinh)14(;coshCx xdxcosh)15(;sinhCx 例例4 4 求积分求积分.2dxxx 解解dxxx 2dxx 25Cx 125125.7227Cx 根据积分公式(根据积分公式(2)Cxdxx 11 dxxg
7、xf)()()1(;)()(dxxgdxxf证证 dxxgdxxf)()(dxxgdxxf)()().()(xgxf 等式成立等式成立.(此性质可推广到有限多个函数之和的情况)(此性质可推广到有限多个函数之和的情况)三、三、不定积分的性质不定积分的性质 dxxkf)()2(.)(dxxfk(k是是常常数数,)0 k例例5 5 求积分求积分解解.)1213(22dxxx dxxx)1213(22 dxxdxx 22112113xarctan3 xarcsin2 C 例例6 6 求积分求积分解解.)1(122dxxxxx dxxxxx )1(122dxxxxx )1()1(22dxxx 1112d
8、xxdxx 1112.lnarctanCxx 例例7 7 求积分求积分解解.)1(21222dxxxx dxxxx )1(21222dxxxxx )1(12222dxxdxx 22111.arctan1Cxx 例例8 8 求积分求积分解解.2cos11 dxx dxx2cos11 dxx1cos2112 dxx2cos121.tan21Cx 说明:说明:以上几例中的被积函数都需要进行以上几例中的被积函数都需要进行恒等变形,才能使用基本积分表恒等变形,才能使用基本积分表.解解,sinsec2xxdxdy dxxxy sinsec2,costanCxx ,5)0(y,6 C所求曲线方程为所求曲线方
9、程为.6costan xxy基本积分表基本积分表(1)不定积分的性质不定积分的性质 原函数的概念:原函数的概念:)()(xfxF 不定积分的概念:不定积分的概念:CxFdxxf)()(求微分与求积分的互逆关系求微分与求积分的互逆关系四、四、小结小结思考题思考题符号函数符号函数 0,10,00,1sgn)(xxxxxf在在 内是否存在原函数?为什么?内是否存在原函数?为什么?),(思考题解答思考题解答不存在不存在.假设有原函数假设有原函数)(xF 0,0,0,)(xCxxCxCxxF但但)(xF在在0 x处处不不可可微微,故假设错误故假设错误所以所以 在在 内不存在原函数内不存在原函数.),()
10、(xf结论结论每一个含有每一个含有第一类间断点第一类间断点的函数都的函数都没有原函数没有原函数.一、一、填空题:填空题:1 1、一个已知的函数,有一个已知的函数,有_个原函数,其中任意个原函数,其中任意两个的差是一个两个的差是一个_;2 2、)(xf的的_称为称为)(xf的不定积分;的不定积分;3 3、把把)(xf的一个原函数的一个原函数)(xF的图形叫做函数的图形叫做函数)(xf的的_,它的方程是,它的方程是)(xFy ,这样不定积,这样不定积 dxxf)(在几何上就表示在几何上就表示_,它的方程是,它的方程是 CxFy )(;4 4、由由)()(xfxF 可 知,在 积 分 曲 线 族可
11、知,在 积 分 曲 线 族CxFy )()(是任意常数是任意常数C上横坐标相同的点上横坐标相同的点处作切线,这些切线彼此是处作切线,这些切线彼此是_的;的;5 5、若若)(xf在某区间上在某区间上_,则在该区间上,则在该区间上)(xf的的 原函数一定存在;原函数一定存在;练习题练习题6 6、dxxx_ _;7 7、xxdx2_;8 8、dxxx)23(2_;9 9、dxxx)1)(1(3_;1010、dxxx2)1(=_=_._.二、二、求下列不定积分:求下列不定积分:1 1、dxxx221 2 2、dxxxx325323 3、dxx2cos2 4 4、dxxxx22sincos2cos5 5
12、、dxxxx)11(26 6、xdxxxx2222sec1sin 三、一曲线通过点三、一曲线通过点)3,(2e,且在任一点处的切线的斜,且在任一点处的切线的斜 率等于该点横坐标的倒数,求该曲线的方程率等于该点横坐标的倒数,求该曲线的方程.四、证明函数四、证明函数xxexexeexxxxsinhcoshcoshsinh,212 都是都是和和的原函数的原函数.一、一、1 1、无穷多、无穷多,常数;常数;2 2、全体原函数;、全体原函数;3 3、积分曲线、积分曲线,积分曲线族;积分曲线族;4 4、平行;、平行;5 5、连续;、连续;6 6、Cx 2552;7 7、Cx 2332;8 8、Cxxx 2
13、23323;9 9、Cxxxx 2325332523、1010、Cxxx 252352342.练习题答案练习题答案二、二、1 1、Cxx arctan;2 2、Cxx 3ln2ln)32(52;3 3、Cxx 2sin;Cxx )tan(cot.4;5 5、Cxx 427)7(4;6 6、Cxarcx cottan.三、三、Cxy ln.问题问题 xdx2cos,2sinCx 解决方法解决方法利用复合函数,设置中间变量利用复合函数,设置中间变量.过程过程令令xt2,21dtdx xdx2cosdtt cos21Ct sin21.2sin21Cx 一、第一类换元法一、第一类换元法在一般情况下:在
14、一般情况下:设设),()(ufuF 则则.)()(CuFduuf如果如果)(xu (可微)(可微)dxxxfxdF)()()(CxFdxxxf)()()()()(xuduuf 由此可得换元法定理由此可得换元法定理设设)(uf具有原函数,具有原函数,dxxxf)()()()(xuduuf 第一类换元公式第一类换元公式(凑微分法凑微分法)说明说明使用此公式的关键在于将使用此公式的关键在于将 dxxg)(化为化为.)()(dxxxf观察重点不同,所得结论不同观察重点不同,所得结论不同.)(xu 可可导导,则有换元公式则有换元公式定理定理1 1例例1 1 求求.2sin xdx解解(一)(一)xdx2
15、sin )2(2sin21xxd;2cos21Cx 解解(二)(二)xdx2sin xdxxcossin2 )(sinsin2xxd ;sin2Cx 解解(三)(三)xdx2sin xdxxcossin2 )(coscos2xxd .cos2Cx 例例2 2 求求.231dxx 解解,)23(23121231 xxxdxx 231dxxx)23(23121 duu 121Cu ln21.)23ln(21Cx dxbaxf)(baxuduufa)(1一般地一般地例例3 3 求求.)ln21(1dxxx 解解dxxx )ln21(1)(lnln211xdx )ln21(ln21121xdx xul
16、n21 duu121Cu ln21.)ln21ln(21Cx 例例4 4 求求.)1(3dxxx 解解dxxx 3)1(dxxx 3)1(11)1()1(1)1(132xdxx 221)1(2111CxCx .)1(21112Cxx 例例5 5 求求.122dxxa 解解dxxa 221dxaxa 222111 axdaxa2111.arctan1Caxa 例例6 6 求求.25812dxxx 解解dxxx 25812dxx 9)4(12dxx 13413122 341341312xdx.34arctan31Cx 例例7 7 求求.11dxex 解解dxex 11dxeeexxx 11dxee
17、xx 11dxeedxxx 1)1(11xxededx .)1ln(Cexx 例例8 8 求求.)11(12dxexxx 解解,1112xxx dxexxx 12)11()1(1xxdexx .1Cexx 例例9 9 求求.12321dxxx 原式原式 dxxxxxxx 123212321232dxxdxx 12413241)12(1281)32(3281 xdxxdx .121213212133Cxx 例例1010 求求解解.cos11 dxx dxxcos11 dxxxxcos1cos1cos1 dxxx2cos1cos1 dxxx2sincos1 )(sinsin1sin122xdxdx
18、x.sin1cotCxx 例例1111 求求解解.cossin52 xdxx xdxx52cossin )(sincossin42xxdx )(sin)sin1(sin222xdxx )(sin)sinsin2(sin642xdxxx.sin71sin52sin31753Cxxx 说明说明 当被积函数是三角函数相乘时,拆开奇当被积函数是三角函数相乘时,拆开奇次项去凑微分次项去凑微分.例例1212 求求解解.2cos3cos xdxx),cos()cos(21coscosBABABA ),5cos(cos212cos3cosxxxx dxxxxdxx)5cos(cos212cos3cos.5si
19、n101sin21Cxx 例例1313 求求解解(一)(一)dxxsin1.csc xdx xdxcsc dxxx2cos2sin21 22cos2tan12xdxx 2tan2tan1xdxCx 2tanln.)cotln(cscCxx (使用了三角函数恒等变形)(使用了三角函数恒等变形)解解(二)(二)dxxsin1 xdxcsc dxxx2sinsin )(coscos112xdxxucos duu211 duuu111121Cuu 11ln21.cos1cos1ln21Cxx 类似地可推出类似地可推出.)tanln(secsec Cxxxdx解解例例1414 设设 求求 .,cos)(
20、sin22xxf )(xf令令xu2sin,1cos2ux ,1)(uuf duuuf 1)(,212Cuu .21)(2Cxxxf 例例1515 求求解解.2arcsin412dxxx dxxx 2arcsin41222arcsin2112xdxx )2(arcsin2arcsin1xdx .2arcsinlnCx 问题问题?125 dxxx解决方法解决方法改变中间变量的设置方法改变中间变量的设置方法.过程过程令令txsin,costdtdx dxxx251tdtttcossin1)(sin25 tdtt25cossin (应用(应用“凑微分凑微分”即可求出结果)即可求出结果)二、第二类换元
21、法二、第二类换元法其其中中)(x 是是)(tx 的的反反函函数数.证证设设 为为 的原函数的原函数,)(t)()(ttf 令令)()(xxF 则则dxdtdtdxF )()()(ttf ,)(1t 设设)(tx 是单调的、可导的函数,是单调的、可导的函数,)()()()(xtdtttfdxxf 则有换元公式则有换元公式并且并且0)(t,又设又设)()(ttf 具有原函数,具有原函数,定理定理2 2第二类积分换元公式第二类积分换元公式 CxFdxxf)()(,)(Cx )()()()(xtdtttfdxxf )(tf ).(xf 说明说明)(xF为为)(xf的原函数的原函数,例例1616 求求解
22、解).0(122 adxax令令taxtan tdtadx2sec dxax221tdtata2secsec1 tdtsecCtt )tanln(sectax22ax .ln22Caaxax 2,2t例例1717 求求解解.423dxxx 令令txsin2 tdtdxcos2 2,2tdxxx 234 tdtttcos2sin44sin223 tdtt23cossin32 tdttt22cos)cos1(sin32 tdttcos)cos(cos3242 Ctt )cos51cos31(3253t2x24x .4514345232Cxx 例例1818 求求解解).0(122 adxax令令ta
23、xsec 2,0ttdttadxtansec dxax221dttatta tantansec tdtsecCtt )tanln(sectax22ax .ln22Caaxax 说明说明(1)(1)以上几例所使用的均为以上几例所使用的均为三角代换三角代换.三角代换的三角代换的目的目的是化掉根式是化掉根式.一般规律如下:当被积函数中含有一般规律如下:当被积函数中含有22)1(xa 可令可令;sintax 22)2(xa 可令可令;tantax 22)3(ax 可令可令.sectax 积分中为了化掉根式是否一定采用积分中为了化掉根式是否一定采用三角代换并不是绝对的,需根据被积函数的三角代换并不是绝对
24、的,需根据被积函数的情况来定情况来定.说明说明(2)(2)例例1919 求求dxxx 251(三角代换很繁琐)(三角代换很繁琐)21xt 令令,122 tx,tdtxdx dxxx 251 tdttt 221 dttt 1224Cttt 353251.1)348(151242Cxxx 解解例例2020 求求解解.11dxex xet 1令令,12 tex,122dtttdx dxex 11dtt 122dttt 1111Ctt 11ln .11ln2Cxex ,1ln2 tx说明说明(3)(3)当分母的阶较高时当分母的阶较高时,可采用可采用倒代换倒代换.1tx 例例2121 求求dxxx )2
25、(17令令tx1,12dttdx dxxx )2(17dtttt 27121 dttt7621Ct|21|ln1417.|ln21|2|ln1417Cxx 解解例例2222 求求解解.1124dxxx dxxx 1124令令tx1,12dttdx dxttt 22411111(分母的阶较高)(分母的阶较高)dttt 231222121dttt 2tu duuu121 duuu11121 )1(11121uduu Cuu 11313.1131232Cxxxx 说明说明(4)(4)当被积函数含有两种或两种以上的当被积函数含有两种或两种以上的根式根式 时,可采用令时,可采用令 (其中(其中 为各根指
展开阅读全文