2020年高考理数一轮单元训练卷:第11单元直线与圆(基础卷).doc
- 【下载声明】
1. 本站全部试题类文档,若标题没写含答案,则无答案;标题注明含答案的文档,主观题也可能无答案。请谨慎下单,一旦售出,不予退换。
2. 本站全部PPT文档均不含视频和音频,PPT中出现的音频或视频标识(或文字)仅表示流程,实际无音频或视频文件。请谨慎下单,一旦售出,不予退换。
3. 本页资料《2020年高考理数一轮单元训练卷:第11单元直线与圆(基础卷).doc》由用户(LY520)主动上传,其收益全归该用户。163文库仅提供信息存储空间,仅对该用户上传内容的表现方式做保护处理,对上传内容本身不做任何修改或编辑。 若此文所含内容侵犯了您的版权或隐私,请立即通知163文库(点击联系客服),我们立即给予删除!
4. 请根据预览情况,自愿下载本文。本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
5. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007及以上版本和PDF阅读器,压缩文件请下载最新的WinRAR软件解压。
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 2020 年高 考理数 一轮 单元 训练 11 直线 基础 下载 _一轮复习_高考专区_数学_高中
- 资源描述:
-
1、第11单元 直线与圆第卷一、选择题:本大题共12小题,每小题5分,在每小题给出的四个选项中,只有一项是符合题目要求的1过点(1,0)且与直线垂直的直线方程为( )ABCD【答案】C【解析】由于直线的斜率为,故所求直线的斜率等于,所求直线的方程为,即,故选C2直线,的斜率分别为,如图所示,则( )ABCD【答案】A【解析】设三条直线的倾斜角为,根据三条直线的图形,可得,因为,当时,当时,单调递增,且,故,即,故选A3已知圆,则圆心到直线的距离等于( )ABCD【答案】D【解析】由题,则圆心,则圆心到直线的距离等,故选D4已知直线与圆相交于,两点,则( )A2B4CD与的取值有关【答案】B【解析】
2、由圆,得圆心,半径,又直线恒过圆心,则弦长,故选B5圆关于直线对称的圆的方程是( )ABCD【答案】D【解析】由题意得,圆方程,即为,圆心坐标为,半径为1设圆心关于直线的对称点的坐标为,则,解得,所求圆的圆心坐标为,所求圆的方程为故选D6唐代诗人李颀的诗古从军行开头两句说:“白日登山望烽火,黄昏饮马傍交河”诗中隐含着一个有趣的数学问题“将军饮马”问题,即将军在观望烽火之后从山脚下某处出发,先到河边饮马后再回到军营,怎样走才能使总路程最短?在平面直角坐标系中,设军营所在区域为,若将军从点处出发,河岸线所在直线方程为,并假定将军只要到达军营所在区域即回到军营,则“将军饮马”的最短总路程为( )AB
3、CD【答案】A【解析】设点A关于直线的对称点,的中点为,故,解得,要使从点A到军营总路程最短,即为点到军营最短的距离,“将军饮马”的最短总路程为,故选A7若点为圆的弦的中点,则弦所在直线的方程为( )ABCD【答案】C【解析】圆的标准方程为,又因为点为圆的弦AB的中点,圆心与点P确定直线的斜率为,故弦AB所在直线的斜率为2,所以直线AB的直线方程,即8若直线与曲线有公共点,则的取值范围是( )ABCD【答案】D【解析】将曲线的方程,化简为,即表示以为圆心,以2为半径的一个半圆,如图所示:由圆心到直线的距离等于半径2,可得,解得或,结合图象可得,故选D9经过点作圆的切线,则的方程为( )AB或C
4、D或【答案】C【解析】,圆心坐标坐标为,半径为,当过点的切线存在斜率,切线方程为,圆心到它的距离为,所以有,当过点的切线不存在斜率时,即,显然圆心到它的距离为,所以不是圆的切线,因此切线方程为,故本题选C10已知且为常数,圆,过圆内一点的直线与圆相交于两点,当弦最短时,直线的方程为,则的值为( )A2B3C4D5【答案】B【解析】圆C:化简为,圆心坐标为,半径为,如图:由题意可得,当弦最短时,过圆心与点(1,2)的直线与直线垂直则,即故选B11过点且不垂直于轴的直线与圆交于两点,点在圆上,若是正三角形,则直线的斜率是( )ABCD【答案】D【解析】根据题意,圆,即,圆心为(1,0),半径,设正
展开阅读全文