书签 分享 收藏 举报 版权申诉 / 13
上传文档赚钱

类型2020年高考文科数学一轮复习大题篇-导数的综合应用.docx

  • 上传人(卖家):LY520
  • 文档编号:347395
  • 上传时间:2020-03-08
  • 格式:DOCX
  • 页数:13
  • 大小:95.30KB
  • 【下载声明】
    1. 本站全部试题类文档,若标题没写含答案,则无答案;标题注明含答案的文档,主观题也可能无答案。请谨慎下单,一旦售出,不予退换。
    2. 本站全部PPT文档均不含视频和音频,PPT中出现的音频或视频标识(或文字)仅表示流程,实际无音频或视频文件。请谨慎下单,一旦售出,不予退换。
    3. 本页资料《2020年高考文科数学一轮复习大题篇-导数的综合应用.docx》由用户(LY520)主动上传,其收益全归该用户。163文库仅提供信息存储空间,仅对该用户上传内容的表现方式做保护处理,对上传内容本身不做任何修改或编辑。 若此文所含内容侵犯了您的版权或隐私,请立即通知163文库(点击联系客服),我们立即给予删除!
    4. 请根据预览情况,自愿下载本文。本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
    5. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007及以上版本和PDF阅读器,压缩文件请下载最新的WinRAR软件解压。
    配套讲稿:

    如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。

    特殊限制:

    部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。

    关 键  词:
    2020 年高 文科 数学 一轮 复习 大题篇 导数 综合 应用 下载 _模拟试题_高考专区_数学_高中
    资源描述:

    1、出题人:徐晓云2020年高考文科数学一轮复习大题篇-导数的综合应用【归类解析】题型一证明不等式【解题指导】 (1)证明f(x)g(x)的一般方法是证明h(x)f(x)g(x)0(利用单调性),特殊情况是证明f(x)ming(x)max(最值方法),但后一种方法不具备普遍性(2)证明二元不等式的基本思想是化为一元不等式,一种方法为变换不等式使两个变元成为一个整体,另一种方法为转化后利用函数的单调性,如不等式f(x1)g(x1)f(x2)g(x2)对x1x2恒成立,即等价于函数h(x)f(x)g(x)为增函数【例】设函数f(x)ln xx1.(1)讨论f(x)的单调性;(2)证明:当x(1,)时,

    2、1x.(1)解由题设知,f(x)的定义域为(0,),f(x)1,令f(x)0,解得x1.当0x0,f(x)单调递增;当x1时,f(x)0,f(x)单调递减(2)证明由(1)知,f(x)在x1处取得极大值也为最大值,最大值为f(1)0.所以当x1时,ln xx1.故当x(1,)时,ln xx1,ln1,即1x.【训练】已知函数f(x)xln xex1.(1)求曲线yf(x)在点(1,f(1)处的切线方程;(2)证明:f(x)sin x在(0,)上恒成立(1)解依题意得f(x)ln x1ex,又f(1)1e,f(1)1e,故所求切线方程为y1e(1e)(x1),即y(1e)x.(2)证明依题意,要

    3、证f(x)sin x,即证xln xex1sin x,即证xln xexsin x1.当00,xln x0,故xln xexsin x1,即f(x)1时,令g(x)exsin x1xln x,故g(x)excos xln x1.令h(x)g(x)excos xln x1,则h(x)exsin x,当x1时,exe11,所以h(x)exsin x0,故h(x)在(1,)上单调递增故h(x)h(1)ecos 110,即g(x)0,所以g(x)在(1,)上单调递增,所以g(x)g(1)esin 110,即xln xexsin x1,即f(x)sin x.综上所述,f(x)0,f(x)单调递增;当x(

    4、1,)时,f(x)0,f(x)单调递减所以x1为函数f(x)的极大值点,且是唯一极值点,所以0a1a,故a0,所以g(x)为单调增函数,所以g(x)g(1)2,故k2,即实数k的取值范围是(,2【训练】已知函数f(x)axln x,x1,e,若f(x)0恒成立,求实数a的取值范围【解】f(x)0,即axln x0对x1,e恒成立,a,x1,e令g(x),x1,e,则g(x),x1,e,g(x)0,g(x)在1,e上单调递减,g(x)ming(e),a.实数a的取值范围是.题型三求函数零点个数【解题指导】 (1)可以通过构造函数,将两曲线的交点问题转化为函数零点问题(2)研究方程根的情况,可以通

    5、过导数研究函数的单调性、最大值、最小值、变化趋势等,并借助函数的大致图象判断方程根的情况【例】设函数f(x)x2mln x,g(x)x2(m1)x,当m1时,讨论f(x)与g(x)图象的交点个数【解】令F(x)f(x)g(x)x2(m1)xmln x,x0,问题等价于求函数F(x)的零点个数F(x),当m1时,F(x)0,函数F(x)为减函数,注意到F(1)0,F(4)ln 41时,若0xm,则F(x)0;若1x0,所以函数F(x)在(0,1)和(m,)上单调递减,在(1,m)上单调递增,注意到F(1)m0,F(2m2)mln(2m2)0),由f(x)0,得xe.当x(0,e)时,f(x)0,

    6、f(x)在(e,)上单调递增,当xe时,f(x)取得极小值f(e)ln e2,f(x)的极小值为2.(2)由题设g(x)f(x)(x0),令g(x)0,得mx3x(x0)设(x)x3x(x0),则(x)x21(x1)(x1),当x(0,1)时,(x)0,(x)在(0,1)上单调递增;当x(1,)时,(x)时,函数g(x)无零点;当m时,函数g(x)有且只有一个零点;当0m时,函数g(x)无零点;当m或m0时,函数g(x)有且只有一个零点;当0m时,函数g(x)有两个零点题型四根据函数零点情况求参数范围【解题指导】 函数的零点个数可转化为函数图象的交点个数,确定参数范围时要根据函数的性质画出大致

    7、图象,充分利用导数工具和数形结合思想【例】已知函数f(x)2ln xx2ax(aR)若函数g(x)f(x)axm在上有两个零点,求实数m的取值范围【解】g(x)2ln xx2m,则g(x)2x.因为x,所以当g(x)0时,x1.当x0;当1xe时,g(x)0.故g(x)在x1处取得极大值g(1)m1.又gm2,g(e)m2e2,g(e)g4e20,则g(e)g,所以g(x)在上的最小值是g(e)g(x)在上有两个零点的条件是解得10),所以h(x)1.所以x在上变化时,h(x),h(x)的变化情况如下:x1(1,e)h(x)0h(x)极小值又h3e2,h(1)4,h(e)e2.且h(e)h42

    8、e0.所以h(x)minh(1)4,h(x)maxh3e2,所以实数a的取值范围为40),则F(x)1exxex(x1)ex(x1).令G(x)ex,可知G(x)在(0,)上为减函数,且G20,G(1)1e0,F(x)0,F(x)为增函数;当x(x0,)时,G(x)0,F(x)1时,令h(x)0,得xln a;令h(x)0,得0x1不合题意综上,a的取值范围为(,13已知函数f(x)axex(aR),g(x).(1)求函数f(x)的单调区间;(2)x(0,),使不等式f(x)g(x)ex成立,求a的取值范围【解】(1)因为f(x)aex,xR.当a0时,f(x)0时,令f(x)0,得xln a

    9、.由f(x)0,得f(x)的单调递增区间为(,ln a);由f(x)0时,f(x)的单调递增区间为(,ln a),单调递减区间为(ln a,)(2)因为x(0,),使不等式f(x)g(x)ex,则ax,即a.设h(x),则问题转化为amax,由h(x),令h(x)0,得x.当x在区间(0,)内变化时,h(x),h(x)随x变化的变化情况如下表:x(0,)(,)h(x)0h(x)极大值由上表可知,当x时,函数h(x)有极大值,即最大值为,所以a.故a的取值范围是.4设函数f(x)ax2xln x(2a1)xa1(aR)若对任意的x1,),f(x)0恒成立,求实数a的取值范围【解】f(x)2ax1

    10、ln x(2a1)2a(x1)ln x(x0),易知当x(0,)时,ln xx1,则f(x)2a(x1)(x1)(2a1)(x1)当2a10,即a时,由x1,)得f(x)0恒成立,f(x)在1,)上单调递增,f(x)f(1)0,符合题意当a0时,由x1,)得f(x)0恒成立,f(x)在1,)上单调递减,f(x)f(1)0,显然不合题意,a0舍去当0a时,由ln xx1,得ln 1,即ln x1,则f(x)2a(x1)(2ax1),0a1.当x时,f(x)0恒成立,f(x)在上单调递减,当x时,f(x)f(1)0,显然不合题意,0a1),都有f(xm)2ex,求整数k的最小值【解】因为f(x)为

    11、偶函数,且当x0时,f(x)2ex,所以f(x)2e|x|,对于x1,k,由f(xm)2ex得2e|xm|2ex,两边取以e为底的对数得|xm|ln x1,所以xln x1mxln x1在1,k上恒成立,设g(x)xln x1(x1,k),则g(x)10,所以g(x)在1,k上单调递减,所以g(x)ming(k)kln k1,设h(x)xln x1(x1,k),易知h(x)在1,k上单调递减,所以h(x)maxh(1)2,故2mkln k1,若实数m存在,则必有kln k3,又k1,且k为整数,所以k2满足要求,故整数k的最小值为2.7已知函数f(x)aln x(aR),试求f(x)的零点个数

    12、【解】f(x)()ln x,令f(x)0,解得xe2,令f(x)0,解得0x时,f(x)min0,f(x)无零点,当a时,f(x)min0,f(x)有1个零点,当a时,f(x)min0,解得x1,令f(x)0,解得0x1,所以f(x)在(0,1)上单调递减,在(1,)上单调递增(2)F(x)f(x)3,由(1)得x1,x2,满足0x110可得x2或x1,由f(x)0可得1x2,所以函数f(x)在(,1),(2,)上是增函数,在(1,2)上是减函数,所以函数f(x)的极大值为f(1)c,极小值为f(2)c.而函数f(x)恰有三个零点,故必有解得c0)(1)若g(x)m有零点,求m的取值范围;(2

    13、)确定m的取值范围,使得g(x)f(x)0有两个相异实根【解】(1)g(x)x22e(x0),当且仅当x时取等号,当xe时,g(x)有最小值2e.要使g(x)m有零点,只需m2e.即当m2e,)时,g(x)m有零点(2)若g(x)f(x)0有两个相异实根,则函数g(x)与f(x)的图象有两个不同的交点如图,作出函数g(x)x(x0)的大致图象f(x)x22exm1(xe)2m1e2,其对称轴为xe,f(x)maxm1e2.若函数f(x)与g(x)的图象有两个交点,则m1e22e,即当me22e1时,g(x)f(x)0有两个相异实根m的取值范围是(e22e1,)11已知函数f(x)(3a)x2ln xa3在上无零点,求实数a的取值范围【解】当x从0的右侧趋近于0时,f(x),所以f(x)0恒成立,即只需当x时,a3恒成立令h(x)3,x,则h(x),再令m(x)2ln x2,x,则m(x)m64ln 20,所以h(x)0在上恒成立,所以h(x)在上为增函数,所以h(x)h在上恒成立又h3ln 2,所以a3ln 2,故实数a的取值范围是.13

    展开阅读全文
    提示  163文库所有资源均是用户自行上传分享,仅供网友学习交流,未经上传用户书面授权,请勿作他用。
    关于本文
    本文标题:2020年高考文科数学一轮复习大题篇-导数的综合应用.docx
    链接地址:https://www.163wenku.com/p-347395.html
    LY520
         内容提供者      个人认证 实名认证

    Copyright@ 2017-2037 Www.163WenKu.Com  网站版权所有  |  资源地图   
    IPC备案号:蜀ICP备2021032737号  | 川公网安备 51099002000191号


    侵权投诉QQ:3464097650  资料上传QQ:3464097650
       


    【声明】本站为“文档C2C交易模式”,即用户上传的文档直接卖给(下载)用户,本站只是网络空间服务平台,本站所有原创文档下载所得归上传人所有,如您发现上传作品侵犯了您的版权,请立刻联系我们并提供证据,我们将在3个工作日内予以改正。

    163文库