3.2《解一元一次方程(一)合并同类项与移项》ppt课件..ppt
- 【下载声明】
1. 本站全部试题类文档,若标题没写含答案,则无答案;标题注明含答案的文档,主观题也可能无答案。请谨慎下单,一旦售出,不予退换。
2. 本站全部PPT文档均不含视频和音频,PPT中出现的音频或视频标识(或文字)仅表示流程,实际无音频或视频文件。请谨慎下单,一旦售出,不予退换。
3. 本页资料《3.2《解一元一次方程(一)合并同类项与移项》ppt课件..ppt》由用户(三亚风情)主动上传,其收益全归该用户。163文库仅提供信息存储空间,仅对该用户上传内容的表现方式做保护处理,对上传内容本身不做任何修改或编辑。 若此文所含内容侵犯了您的版权或隐私,请立即通知163文库(点击联系客服),我们立即给予删除!
4. 请根据预览情况,自愿下载本文。本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
5. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007及以上版本和PDF阅读器,压缩文件请下载最新的WinRAR软件解压。
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 解一元一次方程一合并同类项与移项 3.2 一元一次方程 合并 同类项 移项 ppt 课件
- 资源描述:
-
1、请欣赏一首诗:太阳下山晚霞红,我把鸭子赶回笼;太阳下山晚霞红,我把鸭子赶回笼;一半在外闹哄哄,一半的一半进笼中;一半在外闹哄哄,一半的一半进笼中;剩下十五围着我,共有多少请算清剩下十五围着我,共有多少请算清你能列出方程来解决这个问题吗?你能列出方程来解决这个问题吗?希腊数学家丢番图(公元希腊数学家丢番图(公元34世纪)世纪)的墓碑上记载着:的墓碑上记载着:“他的生命的六分之一是幸福童年;他的生命的六分之一是幸福童年;再活了他生命的十二分之一,两颊长起再活了他生命的十二分之一,两颊长起了细细的胡须;了细细的胡须;他结了婚,又度过了一生的七分之一;他结了婚,又度过了一生的七分之一;再过五年,他有了
2、儿子,感到很幸福;再过五年,他有了儿子,感到很幸福;可是儿子只活了他父亲年龄的一半;可是儿子只活了他父亲年龄的一半;儿子死后,他在极悲痛中度过了四年,儿子死后,他在极悲痛中度过了四年,也与世长辞了也与世长辞了”根据以上信息,你知道丢番图活了多少岁吗?根据以上信息,你知道丢番图活了多少岁吗?1 能根据实际问题,建立数学模型能根据实际问题,建立数学模型一元一次方程,来解决;一元一次方程,来解决;2能在解方程中,正确合并同类项能在解方程中,正确合并同类项 1由实际问题引入,进一步熟悉列方程由实际问题引入,进一步熟悉列方程解应用题的分析步骤;解应用题的分析步骤;2渗透运用数学问题来解决实际问题的渗透运
3、用数学问题来解决实际问题的建模思想建模思想1通过引导发现,培养独立思考问题的能通过引导发现,培养独立思考问题的能力;力;2通过学习,更加关注生活,增强用数学通过学习,更加关注生活,增强用数学的意识,从而激发学习数学的热情的意识,从而激发学习数学的热情未知数,列方程,用合并及等式性质未知数,列方程,用合并及等式性质解方程解方程1建立方程时寻找建立方程时寻找“相等关系相等关系”;2合并时合并时“x”或或“x”前面的系数前面的系数为为1或或“1”约公元约公元825年,中亚细亚数年,中亚细亚数学家阿尔学家阿尔-花拉子米写了一本代数花拉子米写了一本代数书,书,阿拉伯文书名是阿拉伯文书名是ilm al-j
4、abr wal muqabalah,直译应为,直译应为还原与对消的科学还原与对消的科学al-jabr 意为意为“还原还原”,这里指把负项移,这里指把负项移到方程另一端到方程另一端“还原还原”为正项;为正项;muqabalah 意即意即“对消对消”或或“化化简简”,指方程两端可以消去相同,指方程两端可以消去相同的项或合并同类项一般认为拉的项或合并同类项一般认为拉丁文中代数学一词丁文中代数学一词algebra是由是由al-jabr演变而来演变而来 阿尔阿尔花拉子米花拉子米(约(约780约约850)合并同类项实际实际问题问题一元一次一元一次方程方程 分析实际问题中的数量关系,利用其中的相等关系列出方
5、程,是解决实际问题的一种数学方法.设未知数设未知数 列方程列方程1167xx怎样解方怎样解方程程?问题问题1:在一卷公元前:在一卷公元前1600年左右遗留下来的古年左右遗留下来的古埃及草卷中埃及草卷中,记载者一些数学问题记载者一些数学问题,其中一个问题翻其中一个问题翻译过来是:译过来是:“啊哈啊哈,它的全部它的全部,它的它的 其和等于其和等于16”.你你能求出问题中的能求出问题中的“它它”?17 解解:设问题中的它为设问题中的它为x,则:它的,则:它的 为为 .根据问题中的相等关系:它的全部它的根据问题中的相等关系:它的全部它的 16可列方程可列方程1717x17合并同类项合并同类项系数化为系
6、数化为11167xx8167x x14分析:解方程,就是把方程变形,变为 x=a(a为常数)的形式.答答:问题中的它是问题中的它是14.解方程中“合并”起了什么作用?解方程中的解方程中的“合并合并”是利用分配律将是利用分配律将含有未知数的项和常数项分别合并为一含有未知数的项和常数项分别合并为一项它使方程变得简单,更接近项它使方程变得简单,更接近x=a的形的形式式.解:设计划生产解:设计划生产型电视机型电视机x台,则计划生台,则计划生产产型电视机型电视机15x台台,计划生产计划生产型电视机型电视机20 x台,台,列方程列方程 某电视机厂今年计划生产电视机某电视机厂今年计划生产电视机21600台,
7、台,其中其中型,型,型,型,型三种电视机的数量之比为型三种电视机的数量之比为1:15:20,这三种电视机计划各生产多少台,这三种电视机计划各生产多少台?x15x20 x21 600练一练练一练 答:答:型电视机计划生产型电视机计划生产600台台,型电视型电视机计划生产机计划生产9000台台,型电视机计划生产型电视机计划生产12000台台合并同类项,得合并同类项,得36x21600系数化成系数化成1,得,得x600所以所以计划生产计划生产型电视机型电视机600159000(台)(台),计划生产计划生产型电视机型电视机6002012000(台)(台).解:解:合并同类项,得合并同类项,得 2x10
8、 系数化为系数化为1,得,得 x5.例例1:解方程:解方程(1)5x3x10 解:合并同类项,得解:合并同类项,得 2x7系数化为系数化为1,得,得7x2152733xx解:合并同类项,得解:合并同类项,得 4x9 系数化为系数化为1,得,得(3)6x1.5x0.5x99x4(4)3x5x6x3420解:合并同类项,得解:合并同类项,得 2x8.系数化为系数化为1,得得 x4.(1)2x0.5x10;(2)3x4x1510;(4)4x5x3x3.536x4x5 9x4练一练练一练解下列方程解下列方程 1简单方程解法步骤 移项;移项;合并同类项;合并同类项;系数化为系数化为1 问题问题2:有一批
9、学生去游玩,若每辆车坐:有一批学生去游玩,若每辆车坐43人,则还有人,则还有35人没座;若每辆车坐人没座;若每辆车坐45 人,则还人,则还有有15人没座,求有多少辆车,多少学生?人没座,求有多少辆车,多少学生?解:设有解:设有x辆车辆车.每辆车坐每辆车坐43人,共有人,共有43x人,加上没座的人,加上没座的35人,共有学生人,共有学生43x35.若每辆车坐若每辆车坐45人,共有人,共有45x人,加上没座的人,加上没座的15人,共有学生人,共有学生45x15.找相等关系:学生的总人数是一个定值,表找相等关系:学生的总人数是一个定值,表示它的两个式子应相等,所以列方程示它的两个式子应相等,所以列方
10、程 43x35 45x15怎样解方程怎样解方程?43x35 45x1543x45x153543x353545x45x153545x等式性质等式性质1 把等式一边的某一项变号后移到另一把等式一边的某一项变号后移到另一边边.移项移项合并同类项合并同类项系数化成系数化成1x103x3043x45x153543x35 45x15答:有答:有10辆车,辆车,465个学生个学生.所以学生总人数为:所以学生总人数为:431035465(人)(人).移项把等式一边的某项变号后移到另把等式一边的某项变号后移到另一边,叫做移项一边,叫做移项 通过移项,含未知数的项与常数项通过移项,含未知数的项与常数项分别位于方程
11、左右两边,使方程更接近分别位于方程左右两边,使方程更接近于于x=a的形式的形式以上解方程中以上解方程中“移项移项”起了什么作用?起了什么作用?下面的移项对不对?如果不对,请下面的移项对不对?如果不对,请改正?改正?(1)从)从5210,得,得2105(2)从)从325,得,得325 (3)从从2x513,得,得2x3x15 2x1053x2x52x3x15练一练练一练下列移项正确的是(下列移项正确的是()A由由2x8,得到,得到x82 B由由5x8x,得到得到5xx 8C由由4x2x1,得到得到4x2x1 D由由5x30,得到得到5x3C练一练练一练例例2:解下列方程:解下列方程.1 6738
12、()()xx解:移项,得解:移项,得6x3x87合并同类项,得合并同类项,得3x15.系数化为系数化为1,得得x5.6x73x86x3x87移项时应注意改变项的符号移项时应注意改变项的符号2125234()()xx解:移项,得解:移项,得212534xx合并同类项,得合并同类项,得5712x 系数化成系数化成1,得,得845x 215234xx212534xx解下列方程解下列方程.(1)10 x46(2)5x73x 533 1254()()xxx1x1165x 练一练练一练解方程的步骤及依据:1 1移项(等式的性质移项(等式的性质1 1)合并(分配律)合并(分配律)系数化为系数化为1 1(等式
13、的性质(等式的性质2 2)2 2“对消对消”与与“还原还原”就是就是“合并合并”与与“移项移项”3 3表示同一量的两个不同式子相等表示同一量的两个不同式子相等 现在你能回答前面提到的古老的现在你能回答前面提到的古老的代数书中的代数书中的“对消对消”与与“还原还原”是什是什么意思吗?么意思吗?“对消对消”与与“还原还原”就就是是“合并合并”与与“移移项项”.下面方程的解法对吗?如果不对,下面方程的解法对吗?如果不对,应怎样改正?应怎样改正?解:移项,得解:移项,得合并同类项,得合并同类项,得 xx32123122 xx3122 xx132x112 x2x 32x系数化为系数化为1,得,得 1 1
14、移项时,通常把含有未知数的移项时,通常把含有未知数的项移到等号的左边,把常数项移到等项移到等号的左边,把常数项移到等号的右边;号的右边;2 2移项要改变符号移项要改变符号.注意注意 例例3:有一列数:有一列数,按一定的规律成按一定的规律成1,2,4,8,16,32,64,其中某三个,其中某三个相邻数的和为相邻数的和为1 536,这三个数各是多少,这三个数各是多少?解:设这三个相邻数中的第解:设这三个相邻数中的第1个数为个数为x,那么第那么第2个数就是个数就是2x,第第3个数就是个数就是2(2x)4x.根据这三个数的和是根据这三个数的和是1536,得,得 x2x4x1 536.合并同类项,得合并
15、同类项,得 3x1 536.系数化为系数化为1,得,得 x=512.所以所以 2x=1 024,4x2 048.答:这三个数是答:这三个数是512、1 024、2 048.1有一列数,按一定规律排列成有一列数,按一定规律排列成1,5,25,125若其中某三个相邻数的若其中某三个相邻数的和是和是13 125,这三个数各是多少,这三个数各是多少?练一练练一练解:设这三个相邻数中的第解:设这三个相邻数中的第1个数为个数为x,那么第那么第2个数就是个数就是5x,第第3个数就是个数就是5(5x)25x.根据这三个数的和是根据这三个数的和是13 125,得,得 x5x25x13 125.合并同类项,得合并
展开阅读全文