22.1.4二次函数y=ax2+bx+c的图象和性质课件.ppt
- 【下载声明】
1. 本站全部试题类文档,若标题没写含答案,则无答案;标题注明含答案的文档,主观题也可能无答案。请谨慎下单,一旦售出,不予退换。
2. 本站全部PPT文档均不含视频和音频,PPT中出现的音频或视频标识(或文字)仅表示流程,实际无音频或视频文件。请谨慎下单,一旦售出,不予退换。
3. 本页资料《22.1.4二次函数y=ax2+bx+c的图象和性质课件.ppt》由用户(三亚风情)主动上传,其收益全归该用户。163文库仅提供信息存储空间,仅对该用户上传内容的表现方式做保护处理,对上传内容本身不做任何修改或编辑。 若此文所含内容侵犯了您的版权或隐私,请立即通知163文库(点击联系客服),我们立即给予删除!
4. 请根据预览情况,自愿下载本文。本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
5. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007及以上版本和PDF阅读器,压缩文件请下载最新的WinRAR软件解压。
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 22.1 二次 函数 ax2 bx 图象 性质 课件
- 资源描述:
-
1、九九 年年 级级 数数 学学 22.1.4二次函数y=ax2+bx+c的图象和性质西平中学:柴亚军w怎样直接作出怎样直接作出函数函数y=3xy=3x2 2-6x+5-6x+5的图象的图象?函数y=ax+bx+c的图象 w我们知道我们知道,作出二次函数作出二次函数y=3xy=3x2 2的图象的图象,通过平移抛物线通过平移抛物线y=3xy=3x2 2可以得到二次函数可以得到二次函数y=3xy=3x2 2-6x+5-6x+5的图象的图象.w1.1.配方配方:5632xxy35232xx提取二次项系数3511232xx配方:加上再减去一次项系数绝对值一半的平方32132x整理:前三项化为平方形式,后两
2、项合并同类项.2132x化简:去掉中括号老师提示老师提示:配方后的表达配方后的表达式通常称为式通常称为配配方式方式或或顶点式顶点式直接画函数y=ax+bx+c的图象w4.4.画对称轴画对称轴,描点描点,连线连线:作出二次函数作出二次函数y=3(x-1)y=3(x-1)2 2+2+2的图象的图象 w2.2.根据配方式根据配方式(顶点式顶点式)确定开口方向确定开口方向,对称轴对称轴,顶点坐标顶点坐标.x-2-101234 2132xyw3.3.列表列表:根据对称性根据对称性,选取适当值列表计算选取适当值列表计算.292914145 52 25 514142929wa=30,a=30,开口向上开口向
3、上;对称轴对称轴:直线直线x=1;x=1;顶点坐标顶点坐标:(1,2).:(1,2).学了就用,别客气?作出函数作出函数y=2xy=2x2 2-12x+13-12x+13的图象的图象.5632xxyX=1(1,2)131222xxyX=3(3,-5)w例例.求次函数求次函数y=ax+bx+c的对的对称轴和顶点坐标称轴和顶点坐标 函数y=ax+bx+c的顶点式 w一般地一般地,对于二次函数对于二次函数y=axy=ax+bx+c,+bx+c,我们可以利用配方法我们可以利用配方法推导出它的对称轴和顶点坐标推导出它的对称轴和顶点坐标.w1.1.配方配方:cbxaxy2acxabxa2提取二次项系数ac
4、ababxabxa22222配方:加上再减去一次项系数绝对值一半的平方222442abacabxa整理:前三项化为平方形式,后两项合并同类项.44222abacabxa化简:去掉中括号老师提示老师提示:这个结果通常这个结果通常称为求称为求顶点坐顶点坐标公式标公式.44222abacabxay顶点坐标公式?因此因此,二次函数二次函数y=axy=ax+bx+c的图象是一条抛物线的图象是一条抛物线.根据公式确定下列二次函数图象的对称轴和顶点坐标:根据公式确定下列二次函数图象的对称轴和顶点坐标:.2:abx它的对称轴是直线.44,22abacab它的顶点是.44222abacabxay;13122.1
5、2xxy;319805.22xxy;2212.3xxy.2123.4xxy例:指出抛物线例:指出抛物线:254yxx 的开口方向,求出它的对称轴、顶点坐的开口方向,求出它的对称轴、顶点坐标、与标、与y y轴的交点坐标、与轴的交点坐标、与x x轴的交点坐轴的交点坐标。并画出草图。标。并画出草图。对于对于y=ax2+bx+c我们可以确定它的开口我们可以确定它的开口方向,求出它的对称轴、顶点坐标、与方向,求出它的对称轴、顶点坐标、与y轴轴的交点坐标、与的交点坐标、与x轴的交点坐标(有交点时)轴的交点坐标(有交点时),这样就可以画出它的大致图象。,这样就可以画出它的大致图象。练习练习:1.抛物线抛物线
展开阅读全文