2.3.3平面向量的基本定理及坐标表示课件-精选.ppt
- 【下载声明】
1. 本站全部试题类文档,若标题没写含答案,则无答案;标题注明含答案的文档,主观题也可能无答案。请谨慎下单,一旦售出,不予退换。
2. 本站全部PPT文档均不含视频和音频,PPT中出现的音频或视频标识(或文字)仅表示流程,实际无音频或视频文件。请谨慎下单,一旦售出,不予退换。
3. 本页资料《2.3.3平面向量的基本定理及坐标表示课件-精选.ppt》由用户(三亚风情)主动上传,其收益全归该用户。163文库仅提供信息存储空间,仅对该用户上传内容的表现方式做保护处理,对上传内容本身不做任何修改或编辑。 若此文所含内容侵犯了您的版权或隐私,请立即通知163文库(点击联系客服),我们立即给予删除!
4. 请根据预览情况,自愿下载本文。本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
5. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007及以上版本和PDF阅读器,压缩文件请下载最新的WinRAR软件解压。
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 2.3 平面 向量 基本 定理 坐标 表示 课件 精选
- 资源描述:
-
1、2.3平面向量的坐标表示平面向量的坐标表示及其运算及其运算复习复习.,22112121eeaaee 使使有有且且只只有有一一对对实实数数意意一一个个向向量量一一平平面面内内任任共共线线的的向向量量,那那么么对对这这是是同同一一平平面面内内两两个个不不如如果果平面向量基本定理:平面向量基本定理:复习复习平面向量基本定理:平面向量基本定理:.(1)21一一组组这这一一平平面面内内所所有有向向量量的的叫叫做做表表示示,我我们们把把不不共共线线向向量量ee基底基底复习复习平面向量基本定理:平面向量基本定理:.(1)21一一组组这这一一平平面面内内所所有有向向量量的的叫叫做做表表示示,我我们们把把不不共
2、共线线向向量量ee基底基底(2)基底不惟一,关键是不共线;基底不惟一,关键是不共线;复习复习平面向量基本定理:平面向量基本定理:.(1)21一一组组这这一一平平面面内内所所有有向向量量的的叫叫做做表表示示,我我们们把把不不共共线线向向量量ee基底基底(2)基底不惟一,关键是不共线;基底不惟一,关键是不共线;的条件下进行分解;的条件下进行分解;、在给出基底在给出基底由定理可将任一向量由定理可将任一向量21(3)eea复习复习平面向量基本定理:平面向量基本定理:.(1)21一一组组这这一一平平面面内内所所有有向向量量的的叫叫做做表表示示,我我们们把把不不共共线线向向量量ee基底基底(2)基底不惟一
3、,关键是不共线;基底不惟一,关键是不共线;的条件下进行分解;的条件下进行分解;、在给出基底在给出基底由定理可将任一向量由定理可将任一向量21(3)eea.,(4)2121惟惟一一确确定定的的数数量量、是是被被、分分解解形形式式惟惟一一基基底底给给定定时时eea 湖南省长沙市一中卫星远程学校平面向量的坐标表示平面向量的坐标表示.jyixayxajiyx 使得使得,、且只有一对实数且只有一对实数向量基本定理可知,有向量基本定理可知,有,由平面,由平面任作一个向量任作一个向量作为基底,作为基底,、向量向量轴方向相等的两个单位轴方向相等的两个单位轴、轴、分别取与分别取与在平面坐标系内,我们在平面坐标系
4、内,我们xOijay湖南省长沙市一中卫星远程学校平面向量的坐标表示平面向量的坐标表示xOijay.).(,)(),(轴轴上上的的坐坐标标在在叫叫做做标标,轴轴上上的的坐坐在在叫叫做做其其中中,记记作作坐坐标标直直角角的的叫叫做做向向量量我我们们把把yayxaxyxaayx,)0,1(,i特特别别地地.)0,0(0,)1,0(j湖南省长沙市一中卫星远程学校平面向量的坐标表示平面向量的坐标表示jia32.1|)1(ajiji底底表表示示向向量量为为基基、,以以向向量量如如图图,若若 xO1231234Cija4y湖南省长沙市一中卫星远程学校平面向量的坐标表示平面向量的坐标表示)(即即:3,2aji
5、a32.1|)1(ajiji底底表表示示向向量量为为基基、,以以向向量量如如图图,若若 xO1231234Cija4y湖南省长沙市一中卫星远程学校平面向量的坐标表示平面向量的坐标表示.坐坐标标相相等等的的的的坐坐标标与与点点向向量量为为起起点点的的以以原原点点COCO)(即即:3,2ajia32.1|)1(ajiji底底表表示示向向量量为为基基、,以以向向量量如如图图,若若 xO1231234Cija4y湖南省长沙市一中卫星远程学校平面向量的坐标表示平面向量的坐标表示)(即即:3,2ajia32.1|)1(ajiji底底表表示示向向量量为为基基、,以以向向量量如如图图,若若 呢呢?量量能能否否
6、用用坐坐标标来来表表示示向向点点,两两、如如图图,平平面面内内有有 )2(ABBAxO1231234CijaA4yB湖南省长沙市一中卫星远程学校平面向量的坐标表示平面向量的坐标表示)(即即:3,2ajia32.1|)1(ajiji底底表表示示向向量量为为基基、,以以向向量量如如图图,若若 呢呢?量量能能否否用用坐坐标标来来表表示示向向点点,两两、如如图图,平平面面内内有有 )2(ABBAxO1231234CijaAB4y湖南省长沙市一中卫星远程学校平面向量的坐标表示平面向量的坐标表示)(即即:3,2ajia32.1|)1(ajiji底底表表示示向向量量为为基基、,以以向向量量如如图图,若若 呢
7、呢?量量能能否否用用坐坐标标来来表表示示向向点点,两两、如如图图,平平面面内内有有 )2(ABBAxO1231234CijaAB4y湖南省长沙市一中卫星远程学校平面向量的坐标表示平面向量的坐标表示jijijijiOAOBAB32)14()24()12(44 )(呢呢?量量能能否否用用坐坐标标来来表表示示向向点点,两两、如如图图,平平面面内内有有 )2(ABBA)(即即:3,2ajia32.1|)1(ajiji底底表表示示向向量量为为基基、,以以向向量量如如图图,若若 xO1231234CijaAB4y湖南省长沙市一中卫星远程学校.1|)1(ajiji底底表表示示向向量量为为基基、,以以向向量量
展开阅读全文