《确定二次函数的表达式》PPT课件2.pptx
- 【下载声明】
1. 本站全部试题类文档,若标题没写含答案,则无答案;标题注明含答案的文档,主观题也可能无答案。请谨慎下单,一旦售出,不予退换。
2. 本站全部PPT文档均不含视频和音频,PPT中出现的音频或视频标识(或文字)仅表示流程,实际无音频或视频文件。请谨慎下单,一旦售出,不予退换。
3. 本页资料《《确定二次函数的表达式》PPT课件2.pptx》由用户(三亚风情)主动上传,其收益全归该用户。163文库仅提供信息存储空间,仅对该用户上传内容的表现方式做保护处理,对上传内容本身不做任何修改或编辑。 若此文所含内容侵犯了您的版权或隐私,请立即通知163文库(点击联系客服),我们立即给予删除!
4. 请根据预览情况,自愿下载本文。本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
5. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007及以上版本和PDF阅读器,压缩文件请下载最新的WinRAR软件解压。
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 确定二次函数的表达式 确定 二次 函数 表达式 PPT 课件
- 资源描述:
-
1、确定二次函数的表达式一、一般式:y=ax+bx+c(a,b,c为常数,a 0)求二次函数y=ax2+bx+c的解析式,关键是求出待定系数a,b,c的值。由已知条件(如二次函数图像上三个点的坐标)列出关于a,b,c的方程组,并求出a,b,c,就可以写出二次函数的解析式。例例1 1 已知已知:抛物线抛物线y=axy=ax2 2+bx+c+bx+c过点(过点(2 2,1 1)、()、(1 1,-2-2)(0 0,5 5)三点,求抛物线的解析式)三点,求抛物线的解析式解:由题意可得:解:由题意可得:4a+2b+c=1 a+b+c=-2 c=5 解之得:解之得:a=5b=-12c=5所以抛物线的解析式是
2、:所以抛物线的解析式是:y=5x2-12x+5.练已知一个二次函数的图象过点(已知一个二次函数的图象过点(1,101,10)、)、(1,41,4)、()、(2,72,7)三点,求这个函数的表达式?)三点,求这个函数的表达式?oxy解:解:设所求的二次函数为设所求的二次函数为y=ax2+bx+c由条件得:由条件得:a-b+c=10a+b+c=44a+2b+c=7解方程得:解方程得:a=2,b=-3,c=5所以所求二次函数是:所以所求二次函数是:y=2x2-3x+5PPT模板: PPT课件: 1,3 3),与),与y y轴轴交点为(交点为(0 0,5 5),求该抛物线的解析式?求该抛物线的解析式?
3、yox所以设所求的二次函数解析式为:所以设所求的二次函数解析式为:y=a(x1)2-3因为已知抛物线的顶点为(因为已知抛物线的顶点为(1 1,3 3)又点又点(0,-5)在抛物线上在抛物线上a-3=-5,解得解得a=-2故所求的抛物线解析式为故所求的抛物线解析式为 y=2(x1)2-3即:即:y=2x2-4x52.已知一个二次函数的图象经过点(4,-3),并且当x=3时有最大值4,试确定这个二次函数的解析式。解法1:(利用一般式利用一般式)设二次函数解析式为:y=ax2+bx+c(a0)由题意知 16a+4b+c=-3 -b/2a=3 (4ac-b2)/4a=4解方程组得:a=-7 b=42
4、c=-59 二次函数的解析式为:y=-7x2+42x-59 解法2:(利用顶点式)当x=3时,有最大值4 顶点坐标为(3,4)设二次函数解析式为:y=a(x-3)2+4 函数图象过点(4,-3)a(4-3)2+4=-3 a=-7 二次函数的解析式为:y=-7(x-3)2+43.二次函数y=ax2+bx+c的图象过点A(0,5),B(5,0)两点,它的对称轴为直线x=3,求这个二次函数的解析式。解:二次函数的对称轴为直线x=3 设二次函数表达式为 y=a(x-3)2+k 图象过点A(0,5),B(5,0)两点 5=a(0-3)2+k 0=a(5-3)2+k 解得:a=1 k=-4 二次函数的表达
5、式:y=(x-3)2-4 即 y =x2-6x+5小结:已知顶点坐标(h,k)或对称轴方程x=h时优先选用顶点式。当抛物线与x轴有两个交点为(x1,0),(x2,0)时,二次函数y=ax2+bx+c可以转化为交点式y=a(x-x1)(x-x2).因此当抛物线与x轴有两个交点为(x1,0),(x2,0)时,可设函数的解析式为y=a(x-x1)(x-x2),在把另一个点的坐标代入其中,即可解得a,求出抛物线的解析式。l 交点式交点式y=a(x-x1)(x-x2).x1和和x2分别是抛物线与分别是抛物线与x轴轴的两个交点的横坐标,这两个交点关于抛物线的的两个交点的横坐标,这两个交点关于抛物线的对称轴
6、对称,则直线对称轴对称,则直线 就就是抛物线的是抛物线的对称轴对称轴.221xxx1:已知二次函数与已知二次函数与x 轴的交点坐标为(轴的交点坐标为(-1,0),(1,0),点(),点(0,1)在图像上,求其解析式。)在图像上,求其解析式。解:设所求的解析式为抛物线与x轴的交点坐标为(-1,0)、(1,0)又点(0,1)在图像上,a=-1即:解:(解:(交点式交点式)二次函数图象经过点二次函数图象经过点 (3,0),(-1,0)设二次函数表达式为设二次函数表达式为:y=a(x-3)(x+1)函数图象过点函数图象过点(1,4)4=a(1-3)(1+1)得得 a=-1 函数的表达式为:函数的表达式
7、为:y=-(x+1)(x-3)=-x2+2x+32:已知二次函数图象经过点已知二次函数图象经过点(1,4),(-1,0)和和(3,0)三三点,求二次函数的表达式。点,求二次函数的表达式。知道抛物线与知道抛物线与x轴的两个交点的坐轴的两个交点的坐标,选用交点式比较简便标,选用交点式比较简便其它解法其它解法:(一般式)设二次函数解析式为y=ax2+bx+c 二次函数图象过点(1,4),(-1,0)和(3,0)a+b+c=4 a-b+c=0 9a+3b+c=0 解得:a=-1 b=2 c=3 函数的解析式为:y=-x2+2x+3(顶点式)解:抛物线与x轴相交两点(-1,0)和(3,0),(-1+3)
8、/2=1 点(1,4)为抛物线的顶点 可设二次函数解析式为:y=a(x-1)2+4 抛物线过点(-1,0)0=a(-1-1)2+4 得 a=-1 函数的解析式为:y=-(x-1)2+43 已知二次函数的图象在已知二次函数的图象在x轴上截得的线段轴上截得的线段长是长是4,且当,且当x1,函数有最小值,函数有最小值-4,求这,求这个二次函数的解析式个二次函数的解析式(-1,0)(3,0)X=1由题意由题意,得得:解解:设图象与设图象与x轴的交点坐标为轴的交点坐标为(,0),(,0),4121221xxxx3121xx)1)(3(xxay设把把(1,-4)代入上式得代入上式得:-4=a(1-3)(1
9、+1)解得解得:a=1 y=x2-2x-31x2x四、用平移式求二次函数的解析式、四、用平移式求二次函数的解析式、1.将抛物线将抛物线 向左平移向左平移4个单位,再向个单位,再向下平移下平移3个单位,求平移后所得抛物线的解析式。个单位,求平移后所得抛物线的解析式。解法:将二次函数的解析式 转化为顶点式得:(1)、由 向左平移4个单位得:(左加右减)(2)、再将 向下平移3个单位得 (上加下减)即:所求的解析式为一、一、求二次函数的解析式的一般步骤:求二次函数的解析式的一般步骤:一设、二列、三解、四还原一设、二列、三解、四还原.二、二次函数常用的几种解析式的确定1、一般式、一般式已知抛物线上三点
10、的坐标三点的坐标,通常选择一般式。通常选择一般式。已知抛物线上顶点坐标(对称轴或最值),顶点坐标(对称轴或最值),通常选择顶点式。通常选择顶点式。已知抛物线与与x轴的交点坐标轴的交点坐标,选择交点式选择交点式。2、顶点式、顶点式3、交点式、交点式4、平移式 将抛物线平移,函数解析式中发生变化的只有顶点坐顶点坐标标,可将原函数先化为顶点式顶点式,再根据“左加右减,左加右减,上加下减上加下减”的法则,即可得出所求新函数的解析式。二次函数关系:y=ax2(a0)y=ax2+k (a0)y=a(x-h)2+k(a0)y=ax 2+bx+c (a0)y=a(x-h)2 (a0)顶点式顶点式一般式一般式y
11、=a(x-x1)(x-x2)(a0)交点式交点式)0,)(0,212xxXcbxaxy轴交于两点(与条件:若抛物线三、求二次函数解析式的思想方法 1、求二次函数解析式的常用方法:求二次函数解析式的常用方法:2、求二次函数解析式的、求二次函数解析式的 常用思想:常用思想:3、二次函数解析式的最终形式:、二次函数解析式的最终形式:待定系数法、配方法、数形结合等。转化思想转化思想:解方程或方程组解方程或方程组 无论采用哪一种解析式求解,无论采用哪一种解析式求解,最后结果最好化为一般式。最后结果最好化为一般式。活学活用活学活用 加深理解加深理解1.某抛物线是将抛物线某抛物线是将抛物线y=ax2 向右平
展开阅读全文