两个计数原理PPT优秀课件1.ppt
- 【下载声明】
1. 本站全部试题类文档,若标题没写含答案,则无答案;标题注明含答案的文档,主观题也可能无答案。请谨慎下单,一旦售出,不予退换。
2. 本站全部PPT文档均不含视频和音频,PPT中出现的音频或视频标识(或文字)仅表示流程,实际无音频或视频文件。请谨慎下单,一旦售出,不予退换。
3. 本页资料《两个计数原理PPT优秀课件1.ppt》由用户(三亚风情)主动上传,其收益全归该用户。163文库仅提供信息存储空间,仅对该用户上传内容的表现方式做保护处理,对上传内容本身不做任何修改或编辑。 若此文所含内容侵犯了您的版权或隐私,请立即通知163文库(点击联系客服),我们立即给予删除!
4. 请根据预览情况,自愿下载本文。本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
5. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007及以上版本和PDF阅读器,压缩文件请下载最新的WinRAR软件解压。
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 两个 计数 原理 PPT 优秀 课件
- 资源描述:
-
1、7.1 两个计数原理两个计数原理1、分类加法计数原理、分类加法计数原理:完成一件事,有:完成一件事,有n类办法,在类办法,在第第1类办法中有类办法中有m1种不同的方法种不同的方法,在第在第2类办法中有类办法中有m2种不同的方法种不同的方法在第在第n类办法中类办法中有有m mn n种不同的方法种不同的方法.那么完成这件事共有那么完成这件事共有 种不同的方种不同的方法法.12nNmmm2 2、分步乘法计数原理、分步乘法计数原理:完成一件事,需要分成完成一件事,需要分成n n个步个步骤,做第骤,做第1 1步有步有m m1 1种不同的方法种不同的方法,做第做第2 2步有步有m m2 2种不同的种不同的
2、方法方法,做第,做第n n步有步有m mn n种不同的方法种不同的方法.那么完成这件那么完成这件事共有事共有 种不同的方法种不同的方法.12nNmmm分类加法计数原理和分步乘法计数原理的分类加法计数原理和分步乘法计数原理的共同点:共同点:不同点:不同点:分类加法计数原理与分类有关,分类加法计数原理与分类有关,分步乘法计数原理与分步有关。分步乘法计数原理与分步有关。回答的都是有关做一件事的不同方法种数的问题回答的都是有关做一件事的不同方法种数的问题分类计数原理分类计数原理 分步计数原理分步计数原理完成一件事,共有完成一件事,共有n类类办法,关键词办法,关键词“分类分类”区别区别1完成一件事,共分
3、完成一件事,共分n个个步骤,关键词步骤,关键词“分步分步”区别区别2区别区别3每类办法都能独立地完成每类办法都能独立地完成这件事情,它是独立的、这件事情,它是独立的、一次的、且每次得到的是一次的、且每次得到的是最后结果,最后结果,只须一种方法只须一种方法就可完成这件事就可完成这件事。每一步得到的只是中间结果,每一步得到的只是中间结果,任何一步都不能独立完成这件任何一步都不能独立完成这件事,缺少任何一步也不能完成事,缺少任何一步也不能完成这件事,这件事,只有各个步骤都完成只有各个步骤都完成了,才能完成这件事了,才能完成这件事。各类办法是互相独立的。各类办法是互相独立的。各步之间是互相关联的。各步
4、之间是互相关联的。即:即:类类独立,步步关联类类独立,步步关联。例例1.1.五名学生报名参加四项体育比赛,每人五名学生报名参加四项体育比赛,每人限报一项,报名方法的种数为多少?又他们争限报一项,报名方法的种数为多少?又他们争夺这四项比赛的冠军,获得冠军的可能性有多夺这四项比赛的冠军,获得冠军的可能性有多少种?少种?解:(解:(1)5名学生中任一名均可报其中的任一项,因此每名学生中任一名均可报其中的任一项,因此每个学生都有个学生都有4种报名方法,种报名方法,5名学生都报了项目才能算完成名学生都报了项目才能算完成这一事件故报名方法种数为这一事件故报名方法种数为44444=种种.54(2)每个项目只
5、有一个冠军,每一名学生都可能获得)每个项目只有一个冠军,每一名学生都可能获得其中的一项获军,因此每个项目获冠军的可能性有其中的一项获军,因此每个项目获冠军的可能性有5种种故有故有n=5=种种.45例例2.给程序模块命名,需要用给程序模块命名,需要用3个字符,其中首个字个字符,其中首个字符要求用字母符要求用字母AG或或UZ,后两个要求用数字,后两个要求用数字19,问最多可以给多少个程序命名?问最多可以给多少个程序命名?分析:分析:要给一个程序模块命名,可以分三个步骤:第一步,要给一个程序模块命名,可以分三个步骤:第一步,选首字符;第二步,先中间字符;第三步,选末位字符。选首字符;第二步,先中间字
6、符;第三步,选末位字符。解:解:首字符共有首字符共有7+613种不同的选法,种不同的选法,答:答:最多可以给最多可以给10531053个程序命名。个程序命名。中间字符和末位字符各有中间字符和末位字符各有9种不同的选法种不同的选法根据分步计数原理,最多可以有根据分步计数原理,最多可以有13991053种不同的选法种不同的选法例例3.核糖核酸(核糖核酸(RNA)分子是在生物细胞中发现的化学成分,一个)分子是在生物细胞中发现的化学成分,一个RNA分子分子是一个有着数百个甚至数千个位置的长链,长链中每一个位置上都由一种称是一个有着数百个甚至数千个位置的长链,长链中每一个位置上都由一种称为碱基的化学成分
7、所占据,总共有个不同的碱基,分别用为碱基的化学成分所占据,总共有个不同的碱基,分别用A,C,G,U表表示,在一个示,在一个RNA分子中,各种碱基能够以任意次序出现,所以在任意一个位分子中,各种碱基能够以任意次序出现,所以在任意一个位置上的碱基与其他位置上的碱基无关。假设有一类置上的碱基与其他位置上的碱基无关。假设有一类RNA分子由分子由100个碱基组个碱基组成,那么能有多少种不同的成,那么能有多少种不同的RNA分子?分子?UUUAAACCCGGG分析分析:用用100个位置表示由个位置表示由100个碱基组成的长链,每个位置都可以从个碱基组成的长链,每个位置都可以从A、C、G、U中任选一个来占据。
8、中任选一个来占据。第1位第2位第3位第100位4种4种4种4种解:解:100个碱基组成的长链共有个碱基组成的长链共有100个位置,在每个位置中,从个位置,在每个位置中,从A、C、G、U中任选一个来填入,每个位置有中任选一个来填入,每个位置有4种填充方法。根据分步计数原理,共有种填充方法。根据分步计数原理,共有100410044444个 种不同的种不同的RNA分子分子.例例4.电子元件很容易实现电路的通与断、电位的高与底等两种电子元件很容易实现电路的通与断、电位的高与底等两种状态,而这也是最容易控制的两种状态。因此计算机内部就采状态,而这也是最容易控制的两种状态。因此计算机内部就采用了每一位只有
9、用了每一位只有0或或1两种数字的计数法,即二进制,为了使计两种数字的计数法,即二进制,为了使计算机能够识别字符,需要对字符进行编码,每个字符可以用一算机能够识别字符,需要对字符进行编码,每个字符可以用一个或多个字节来表示,其中字节是计算机中数据存储的最小计个或多个字节来表示,其中字节是计算机中数据存储的最小计量单位,每个字节由个二进制位构成,问量单位,每个字节由个二进制位构成,问(1)一个字节()一个字节(8位)最多可以表示多少个不同的字符?位)最多可以表示多少个不同的字符?(2)计算机汉字国标码()计算机汉字国标码(GB码)包含了码)包含了6763个汉字,一个汉个汉字,一个汉字为一个字符,要
10、对这些汉字进行编码,每个汉字至少要用多字为一个字符,要对这些汉字进行编码,每个汉字至少要用多少个字节表示?少个字节表示?第1位第2位第3位第8位2种2种2种2种如如00000000,10000000,11111111.开始子模块118条执行路径子模块328条执行路径子模块245条执行路径子模块543条执行路径子模块438条执行路径结束A例例5.计算机编程人员在编计算机编程人员在编写好程序以后要对程序进写好程序以后要对程序进行测试。程序员需要知道行测试。程序员需要知道到底有多少条执行路(即到底有多少条执行路(即程序从开始到结束的线),程序从开始到结束的线),以便知道需要提供多少个以便知道需要提供
11、多少个测试数据。一般的,一个测试数据。一般的,一个程序模块又许多子模块组程序模块又许多子模块组成,它的一个具有许多执成,它的一个具有许多执行路径的程序模块。问:行路径的程序模块。问:这个程序模块有多少条执这个程序模块有多少条执行路径?另外为了减少测行路径?另外为了减少测试时间,程序员需要设法试时间,程序员需要设法减少测试次数,你能帮助减少测试次数,你能帮助程序员设计一个测试方式,程序员设计一个测试方式,以减少测试次数吗?以减少测试次数吗?开始子模块118条执行路径子模块328条执行路径子模块245条执行路径子模块543条执行路径子模块438条执行路径结束A分析:分析:整个模块的任整个模块的任意
12、一条路径都分两步意一条路径都分两步完成完成:第:第1步是从开步是从开始执行到始执行到A点;第点;第2步步是从是从A点执行到结束。点执行到结束。而第步可由子模块而第步可由子模块1或子模块或子模块2或子模块或子模块3来完成;第二步可由来完成;第二步可由子模块子模块4或子模块或子模块5来来完成。因此,分析一完成。因此,分析一条指令在整个模块的条指令在整个模块的执行路径需要用到两执行路径需要用到两个计数原理。个计数原理。开始子模块118条执行路径子模块328条执行路径子模块245条执行路径子模块543条执行路径子模块438条执行路径结束A再测试各个模块之间的信再测试各个模块之间的信息交流是否正常,需要
展开阅读全文