一元一次方程的解法复习-PPT课件-人教版.ppt
- 【下载声明】
1. 本站全部试题类文档,若标题没写含答案,则无答案;标题注明含答案的文档,主观题也可能无答案。请谨慎下单,一旦售出,不予退换。
2. 本站全部PPT文档均不含视频和音频,PPT中出现的音频或视频标识(或文字)仅表示流程,实际无音频或视频文件。请谨慎下单,一旦售出,不予退换。
3. 本页资料《一元一次方程的解法复习-PPT课件-人教版.ppt》由用户(三亚风情)主动上传,其收益全归该用户。163文库仅提供信息存储空间,仅对该用户上传内容的表现方式做保护处理,对上传内容本身不做任何修改或编辑。 若此文所含内容侵犯了您的版权或隐私,请立即通知163文库(点击联系客服),我们立即给予删除!
4. 请根据预览情况,自愿下载本文。本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
5. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007及以上版本和PDF阅读器,压缩文件请下载最新的WinRAR软件解压。
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 一元一次方程 解法 复习 PPT 课件 人教版
- 资源描述:
-
1、一元一次方程的一元一次方程的解法复习解法复习小结与复习小结与复习(一一)目的目的 了解一元一次方程的概念,根据方程的特征,灵了解一元一次方程的概念,根据方程的特征,灵活运用一元一次方程的解法求一元一次方程的解,活运用一元一次方程的解法求一元一次方程的解,进一步培养学生快速准确的计算能力,进一步渗透进一步培养学生快速准确的计算能力,进一步渗透“转化转化”的思想方法。的思想方法。重点、难点重点、难点 1重点:一元一次方程的解法。重点:一元一次方程的解法。2难点:灵活运用一元一次方程的解法。难点:灵活运用一元一次方程的解法。一、复习提问一、复习提问定义:定义:只含有一个未知数,且含未知只含有一个未知
2、数,且含未知数的项的次数数的项的次数1的整式方程。的整式方程。解法步骤:解法步骤:去分母、去括号、移项、去分母、去括号、移项、合并同类项、系数化为合并同类项、系数化为l,把一个一元,把一个一元一次方程一次方程“转化转化”成成“x=a”的形式。的形式。一一元元一一次次方方程程一元一次方程解法:第一步:去分母 第二步:去括号 第三步:移项 第四步:合并 第五步:系数化1(等式性质2)(分配律)(等式性质1)(逆用分配律)(等式性质2)二、练习二、练习 1下列各式哪些是一元一次方程。下列各式哪些是一元一次方程。2x532 x21xx5(1)(1)+1=3x4+1=3x4=(3)x=o (3)x=o
3、一一2x=0 (5)3x2x=0 (5)3x一一y=ly=l十十2y2y(2)(2)(4)(4)(1)(1)、(2)(2)、(3)(3)都是一元一次方程,都是一元一次方程,(4)(4)、(5)(5)不是不是一元一次方程一元一次方程)2解下列方程。解下列方程。2121(1)(1)(x(x一一3)3)2 2一一(x(x一一3)3)455421254(2)(2)(x x一一3)3)=1=1x xX=5X=5 X=14/5X=14/5 2x6115 x342 x(3)(3)=l+=l+X=-3/2X=-3/2 3.05.01x3202.03.0 x(4)(4)x=x=+l+l X=7/52X=7/52
4、 3解方程。解方程。(1)(1)5x5x一一2 23 3(2)(2)321x=1=1 X=1X=1或或X=-1/5X=-1/5 X=-1X=-1或或X=2X=222mab215已知,已知,a一一3+(b十十1)2 =0,代数式,代数式的值比的值比b一一a十十m多多1,求,求m的值。的值。解:因为解:因为a a一一3 30 (b+1)200 (b+1)20 又又a a一一3 3+(b+(b十十1)1)2 2=0=0 a a一一3 30 0且且(b+1)(b+1)2 2=0=0 a a3=0 b3=0 b十十l=0l=0 即即a a3 b=3 b=一一1 1 把把a=3a=3,b=b=一一1 1分
5、别代人代数式分别代人代数式 22mabb b一一a a十十m m21 得得 23)1(2m25m=2121(一一1)1)一一3+m=3+m=一一3 3+m+m 根据题意,得根据题意,得 25m21一一(3 3十十m)m)l l m m0 0 6 6m m为何值时,关于为何值时,关于x x的方程的方程4x4x一一2m2m3x+13x+1的解是的解是x x2x2x一一 3m3m的的2 2倍。倍。41解:关于;的方程解:关于;的方程4x一一2m3x+1,得,得x2m+1 解关于解关于x的方程的方程 x2x一一3m 得得x3m 根据题意,得根据题意,得 2m+l=23m 解之,得解之,得 m小结与复习
6、小结与复习(二二)目的目的 使学生进一步能以一元一次方程为工具解决一些简使学生进一步能以一元一次方程为工具解决一些简单的实际问题,能借助图表整体把握和分析题意,从单的实际问题,能借助图表整体把握和分析题意,从多角度思考问题,寻找等量关系,恰当地转化和分析多角度思考问题,寻找等量关系,恰当地转化和分析量与量之间的关系,提高学生运用方程解决实际问题量与量之间的关系,提高学生运用方程解决实际问题的能力。的能力。重点、难点重点、难点 1重点:运用方程解决实际问题。重点:运用方程解决实际问题。2难点:寻找等量关系,间接设元。难点:寻找等量关系,间接设元。一、复习一、复习 列一元一次方程解应用题的步骤。列
7、一元一次方程解应用题的步骤。审、设、列、解、验、答审、设、列、解、验、答例例1为了准备小勇为了准备小勇6年后上大学的学费年后上大学的学费5000元,他的父母现在就元,他的父母现在就参加了教育储蓄,下面有两种储蓄方式。参加了教育储蓄,下面有两种储蓄方式。(1)直接存一个直接存一个6年期,年利率是年期,年利率是2.88;(2)先存一个先存一个3年期的,年期的,3年后将本利和自动转存一个年后将本利和自动转存一个3年期。年期。3年年期的年利率是期的年利率是2.7。你认为哪种储蓄方式开始存人的本金比较少你认为哪种储蓄方式开始存人的本金比较少?解:设开始存入解:设开始存入x元。元。(本利和本金十利息本利和
8、本金十利息 利息:本金利息:本金X利率利率X期数)期数)如果按照第一种储蓄方式,那么列方程:如果按照第一种储蓄方式,那么列方程:x(1十十2.886)5000 解得解得 x4263(元元)如果按照第二种蓄储方式,如果按照第二种蓄储方式,等量关系是:第二个等量关系是:第二个3午后本利和午后本利和5000 所以列方程所以列方程 1.081x(1十十2.73)5000 解得解得 x4279 这就是说,大约这就是说,大约4280元,元,3年期满后将本利和再存一个年期满后将本利和再存一个3年期,年期,6年后本利和达到年后本利和达到5000元。元。因此第一种储蓄方式因此第一种储蓄方式(即直接存一个即直接存
9、一个6年期年期)开始存人的本金少。开始存人的本金少。(1)北京市一年漏掉的水相当于新建一个自来水厂,据不完全北京市一年漏掉的水相当于新建一个自来水厂,据不完全统计,全市至少有统计,全市至少有6l05个水龙头,个水龙头,2l05个抽水马桶漏水,个抽水马桶漏水,如果一个关不紧的水龙头,一个月能漏掉如果一个关不紧的水龙头,一个月能漏掉a立方米水,一个漏水立方米水,一个漏水马桶,一个月漏掉马桶,一个月漏掉 b立方米水,那么一个月造成的水流失量至立方米水,那么一个月造成的水流失量至少有多少立方米少有多少立方米?(用含用含a、b的代数式表示的代数式表示)(2)水源透支令人担忧,节约用水迫在眉睫,针对居民用
展开阅读全文