2020届高考数学(理)一轮复习讲义 9.4 直线与圆、圆与圆的位置关系.docx
- 【下载声明】
1. 本站全部试题类文档,若标题没写含答案,则无答案;标题注明含答案的文档,主观题也可能无答案。请谨慎下单,一旦售出,不予退换。
2. 本站全部PPT文档均不含视频和音频,PPT中出现的音频或视频标识(或文字)仅表示流程,实际无音频或视频文件。请谨慎下单,一旦售出,不予退换。
3. 本页资料《2020届高考数学(理)一轮复习讲义 9.4 直线与圆、圆与圆的位置关系.docx》由用户(和和062)主动上传,其收益全归该用户。163文库仅提供信息存储空间,仅对该用户上传内容的表现方式做保护处理,对上传内容本身不做任何修改或编辑。 若此文所含内容侵犯了您的版权或隐私,请立即通知163文库(点击联系客服),我们立即给予删除!
4. 请根据预览情况,自愿下载本文。本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
5. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007及以上版本和PDF阅读器,压缩文件请下载最新的WinRAR软件解压。
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 2020届高考数学(理)一轮复习讲义 9.4直线与圆、圆与圆的位置关系 高考 数学 一轮 复习 温习 讲义 直线 位置 关系 瓜葛 下载 _一轮复习_高考专区_数学_高中
- 资源描述:
-
1、公众号码:王校长资源站9.4直线与圆、圆与圆的位置关系最新考纲考情考向分析1.能根据给定直线、圆的方程,判断直线与圆的位置关系;能根据给定两个圆的方程判断两圆的位置关系2.能用直线和圆的方程解决一些简单的问题3.初步了解用代数方法处理几何问题的思想.考查直线与圆的位置关系、圆与圆的位置关系的判断;根据位置关系求参数的范围、最值、几何量的大小等题型主要以选择、填空题为主,要求相对较低,但内容很重要,有时也会在解答题中出现.1判断直线与圆的位置关系常用的两种方法(1)几何法:利用圆心到直线的距离d和圆的半径r的大小关系dr相离(2)代数法:2圆与圆的位置关系设圆O1:(xa1)2(yb1)2r(r
2、10),圆O2:(xa2)2(yb2)2r(r20). 方法位置关系几何法:圆心距d与r1,r2的关系代数法:联立两圆方程组成方程组的解的情况外离dr1r2无解外切dr1r2一组实数解相交|r1r2|dr1r2两组不同的实数解内切d|r1r2|(r1r2)一组实数解内含0d|r1r2|(r1r2)无解概念方法微思考1在求过一定点的圆的切线方程时,应注意什么?提示应首先判断这点与圆的位置关系,若点在圆上则该点为切点,切线只有一条;若点在圆外,切线应有两条;若点在圆内,切线为零条2用两圆的方程组成的方程组有一解或无解时能否准确判定两圆的位置关系?提示不能,当两圆方程组成的方程组有一解时,两圆有外切
3、和内切两种可能情况,当方程组无解时,两圆有相离和内含两种可能情况题组一思考辨析1判断下列结论是否正确(请在括号中打“”或“”)(1)如果两圆的圆心距小于两圆的半径之和,则两圆相交()(2)从两圆的方程中消掉二次项后得到的二元一次方程是两圆的公共弦所在的直线方程()(3)过圆O:x2y2r2上一点P(x0,y0)的圆的切线方程是x0xy0yr2.()(4)过圆O:x2y2r2外一点P(x0,y0)作圆的两条切线,切点分别为A,B,则O,P,A,B四点共圆且直线AB的方程是x0xy0yr2.()(5)如果直线与圆组成的方程组有解,则直线与圆相交或相切()题组二教材改编2若直线xy10与圆(xa)2
4、y22有公共点,则实数a的取值范围是()A3,1 B1,3C3,1 D(,31,)答案C解析由题意可得,圆的圆心为(a,0),半径为,即|a1|2,解得3a1.3圆(x2)2y24与圆(x2)2(y1)29的位置关系为()A内切 B相交 C外切 D相离答案B解析两圆圆心分别为(2,0),(2,1),半径分别为2和3,圆心距d.32d2,点A(3,5)在圆外显然,当切线斜率不存在时,直线与圆相切,即切线方程为x30,当切线斜率存在时,可设所求切线方程为y5k(x3),即kxy53k0.又圆心为(1,2),半径r2,而圆心到切线的距离d2,即|32k|2,k,故所求切线方程为5x12y450或x3
5、0.题型一直线与圆的位置关系命题点1位置关系的判断例1 (2018本溪模拟)在ABC中,若asin Absin Bcsin C0,则圆C:x2y21与直线l:axbyc0的位置关系是()A相切 B相交 C相离 D不确定答案A解析因为asin Absin Bcsin C0,所以由正弦定理得a2b2c20.故圆心C(0,0)到直线l:axbyc0的距离d1r,故圆C:x2y21与直线l:axbyc0相切,故选A.命题点2弦长问题例2 若a2b22c2(c0),则直线axbyc0被圆x2y21所截得的弦长为()A. B1 C. D.答案D解析因为圆心(0,0)到直线axbyc0的距离d,因此根据直角
6、三角形的关系,弦长的一半就等于,所以弦长为.命题点3切线问题例3 已知圆C:(x1)2(y2)210,求满足下列条件的圆的切线方程(1)与直线l1:xy40平行;(2)与直线l2:x2y40垂直;(3)过切点A(4,1)解(1)设切线方程为xyb0,则,b12,切线方程为xy120.(2)设切线方程为2xym0,则,m5,切线方程为2xy50.(3)kAC,过切点A(4,1)的切线斜率为3,过切点A(4,1)的切线方程为y13(x4),即3xy110.思维升华 (1)判断直线与圆的位置关系的常见方法几何法:利用d与r的关系代数法:联立方程之后利用判断点与圆的位置关系法:若直线恒过定点且定点在圆
7、内,可判断直线与圆相交上述方法中最常用的是几何法,点与圆的位置关系法适用于动直线问题(2)处理直线与圆的弦长问题时多用几何法,即弦长的一半、弦心距、半径构成直角三角形(3)圆的切线问题的处理要抓住圆心到直线的距离等于半径,从而建立关系解决问题跟踪训练1 (1)圆x2y22x4y0与直线2txy22t0(tR)的位置关系为_答案相交解析直线2txy22t0恒过点(1,2),12(2)2214(2)50,点(1,2)在圆x2y22x4y0内,直线2txy22t0与圆x2y22x4y0相交(2)过点(3,1)作圆(x2)2(y2)24的弦,其中最短弦的长为_答案2解析设P(3,1),圆心C(2,2)
8、,则|PC|,半径r2,由题意知最短的弦过P(3,1)且与PC垂直,所以最短弦长为22.(3)过点P(2,4)引圆(x1)2(y1)21的切线,则切线方程为_答案x2或4x3y40解析当直线的斜率不存在时,直线方程为x2,此时,圆心到直线的距离等于半径,直线与圆相切,符合题意;当直线的斜率存在时,设直线方程为y4k(x2),即kxy42k0,直线与圆相切,圆心到直线的距离等于半径,即d1,解得k,所求切线方程为xy420,即4x3y40.综上,切线方程为x2或4x3y40.题型二圆与圆的位置关系命题点1位置关系的判断例4 分别求当实数k为何值时,两圆C1:x2y24x6y120,C2:x2y2
9、2x14yk0相交和相切解将两圆的一般方程化为标准方程,得C1:(x2)2(y3)21,C2:(x1)2(y7)250k,则圆C1的圆心为C1(2,3),半径r11;圆C2的圆心为C2(1,7),半径r2,k50.从而|C1C2|5.当|1|51,即46,即14k34时,两圆相交当15,即k34时,两圆外切;当|1|5,即k14时,两圆内切所以当k14或k34时,两圆相切命题点2公共弦问题例5 已知圆C1:x2y22x6y10和C2:x2y210x12y450.(1)求证:圆C1和圆C2相交;(2)求圆C1和圆C2的公共弦所在直线的方程和公共弦长(1)证明由题意得,圆C1和圆C2一般方程化为标
10、准方程,得(x1)2(y3)211,(x5)2(y6)216,则圆C1的圆心C1(1,3),半径r1,圆C2的圆心C2(5,6),半径r24,两圆圆心距d|C1C2|5,r1r24,|r1r2|4,|r1r2|d0)截直线xy0所得线段的长度是2,则圆M与圆N:(x1)2(y1)21的位置关系是()A内切 B相交 C外切 D相离答案B解析圆M:x2(ya)2a2(a0),圆心坐标为M(0,a),半径r1为a,圆心M到直线xy0的距离d,由几何知识得2()2a2,解得a2.M(0,2),r12.又圆N的圆心坐标N(1,1),半径r21,|MN|,r1r23,r1r21.r1r2|MN|r1r2,
展开阅读全文