2020届高考数学(理)一轮复习讲义 8.8 立体几何中的向量方法(二)-求空间角和距离.docx
- 【下载声明】
1. 本站全部试题类文档,若标题没写含答案,则无答案;标题注明含答案的文档,主观题也可能无答案。请谨慎下单,一旦售出,不予退换。
2. 本站全部PPT文档均不含视频和音频,PPT中出现的音频或视频标识(或文字)仅表示流程,实际无音频或视频文件。请谨慎下单,一旦售出,不予退换。
3. 本页资料《2020届高考数学(理)一轮复习讲义 8.8 立体几何中的向量方法(二)-求空间角和距离.docx》由用户(和和062)主动上传,其收益全归该用户。163文库仅提供信息存储空间,仅对该用户上传内容的表现方式做保护处理,对上传内容本身不做任何修改或编辑。 若此文所含内容侵犯了您的版权或隐私,请立即通知163文库(点击联系客服),我们立即给予删除!
4. 请根据预览情况,自愿下载本文。本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
5. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007及以上版本和PDF阅读器,压缩文件请下载最新的WinRAR软件解压。
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 2020届高考数学(理)一轮复习讲义 8.8立体几何中的向量方法(二)求空间角和距离 高考 数学 一轮 复习 温习 讲义 立体几何 中的 向量 方法 法子 空间 以及 距离 下载 _一轮复习_高考专区_数学_高中
- 资源描述:
-
1、公众号码:王校长资源站8.8立体几何中的向量方法(二)求空间角和距离最新考纲考情考向分析1.能用向量方法解决直线与直线、直线与平面、平面与平面的夹角的计算问题.2.了解向量方法在研究立体几何问题中的应用.本节是高考中的必考内容,涉及用向量法计算空间异面直线所成角、直线和平面所成角、二面角及空间距离等内容,考查热点是空间角的求解.题型以解答题为主,要求有较强的数学运算素养,广泛应用函数与方程思想、转化与化归思想.1.两条异面直线所成角的求法设a,b分别是两异面直线l1,l2的方向向量,则l1与l2所成的角a与b的夹角范围0,求法cos cos 2.斜线和平面所成的角(1)斜线和它在平面内的射影的
2、所成的角叫做斜线和平面所成的角(或斜线和平面的夹角).(2)斜线和它在平面内的射影所成的角,是斜线和这个平面内所有直线所成角中最小的角.3.二面角(1)从一条直线出发的两个半平面所组成的图形叫做二面角.(2)在二面角l的棱上任取一点O,在两半平面内分别作射线OAl,OBl,则AOB叫做二面角l的平面角.4.空间向量与空间角的关系(1)设异面直线l1,l2的方向向量分别为m1,m2,则l1与l2所成的角满足cos |cosm1,m2|.(2)设直线l的方向向量和平面的法向量分别为m,n,则直线l与平面所成角满足sin |cosm,n|.(3)求二面角的大小1如图,AB、CD是二面角l的两个面内与
3、棱l垂直的直线,则二面角的大小,.2如图,n1,n2分别是二面角l的两个半平面,的法向量,则二面角的大小满足cos cosn1,n2或cosn1,n2.概念方法微思考1.利用空间向量如何求线段长度?提示利用|2 可以求空间中有向线段的长度.2.如何求空间点面之间的距离?提示点面距离的求法:已知AB为平面的一条斜线段,n为平面的法向量,则点B到平面的距离为|cos,n|.题组一思考辨析1.判断下列结论是否正确(请在括号中打“”或“”)(1)两直线的方向向量所成的角就是两条直线所成的角.()(2)直线的方向向量和平面的法向量所成的角就是直线与平面所成的角.()(3)两个平面的法向量所成的角是这两个
4、平面所成的角.()(4)两异面直线夹角的范围是,直线与平面所成角的范围是,二面角的范围是0,.()(5)若二面角a的两个半平面,的法向量n1,n2所成角为,则二面角a的大小是.()题组二教材改编2.已知两平面的法向量分别为m(0,1,0),n(0,1,1),则两平面所成的二面角为()A.45 B.135C.45或135 D.90答案C解析cosm,n,即m,n45.两平面所成二面角为45或18045135.3.如图,正三棱柱(底面是正三角形的直棱柱)ABCA1B1C1的底面边长为2,侧棱长为2,则AC1与侧面ABB1A1所成的角为_.答案解析如图,以A为原点,以,(AEAB),所在直线分别为x
5、轴、y轴、z轴(如图)建立空间直角坐标系,设D为A1B1的中点,则A(0,0,0),C1(1,2),D(1,0,2),(1,2),(1,0,2).C1AD为AC1与平面ABB1A1所成的角,cosC1AD,又C1AD,C1AD.题组三易错自纠4.在直三棱柱ABCA1B1C1中,BCA90,M,N分别是A1B1,A1C1的中点,BCCACC1,则BM与AN所成角的余弦值为()A. B. C. D.答案C解析以点C为坐标原点,CA,CB,CC1所在直线分别为x轴、y轴、z轴,建立如图所示的空间直角坐标系.设BCCACC12,则可得A(2,0,0),B(0,2,0),M(1,1,2),N(1,0,2
6、),(1,1,2),(1,0,2).cos,.5.已知向量m,n分别是直线l和平面的方向向量和法向量,若cosm,n,则l与所成的角为_.答案30解析设l与所成角为,cosm,n,sin |cosm,n|,090,30.题型一求异面直线所成的角例1如图,四边形ABCD为菱形,ABC120,E,F是平面ABCD同一侧的两点,BE平面ABCD,DF平面ABCD,BE2DF,AEEC.(1)证明:平面AEC平面AFC;(2)求直线AE与直线CF所成角的余弦值.(1)证明如图所示,连接BD,设BDACG,连接EG,FG,EF.在菱形ABCD中,不妨设GB1.由ABC120,可得AGGC.由BE平面AB
7、CD,ABBC2,可知AEEC.又AEEC,所以EG,且EGAC.在RtEBG中,可得BE,故DF.在RtFDG中,可得FG.在直角梯形BDFE中,由BD2,BE,DF,可得EF,从而EG2FG2EF2,所以EGFG.又ACFGG,AC,FG平面AFC,所以EG平面AFC.因为EG平面AEC,所以平面AEC平面AFC.(2)解如图,以G为坐标原点,分别以GB,GC所在直线为x轴、y轴,|为单位长度,建立空间直角坐标系Gxyz,由(1)可得A(0,0),E(1,0,),F,C(0,0),所以(1,),.故cos,.所以直线AE与直线CF所成角的余弦值为.思维升华用向量法求异面直线所成角的一般步骤
8、(1)选择三条两两垂直的直线建立空间直角坐标系;(2)确定异面直线上两个点的坐标,从而确定异面直线的方向向量;(3)利用向量的夹角公式求出向量夹角的余弦值;(4)两异面直线所成角的余弦值等于两向量夹角余弦值的绝对值.跟踪训练1三棱柱ABCA1B1C1中,ABC为等边三角形,AA1平面ABC,AA1AB,N,M分别是A1B1,A1C1的中点,则AM与BN所成角的余弦值为()A. B. C. D.答案C解析如图所示,取AC的中点D,以D为原点,BD,DC,DM所在直线分别为x轴、y轴、z轴,建立空间直角坐标系,不妨设AC2,则A(0,1,0),M(0,0,2),B(,0,0),N,所以(0,1,2
9、),所以cos,故选C.题型二求直线与平面所成的角例2(2018全国)如图,四边形ABCD为正方形,E,F分别为AD,BC的中点,以DF为折痕把DFC折起,使点C到达点P的位置,且PFBF.(1)证明:平面PEF平面ABFD;(2)求DP与平面ABFD所成角的正弦值.(1)证明由已知可得BFPF,BFEF,PFEFF,PF,EF平面PEF,所以BF平面PEF.又BF平面ABFD,所以平面PEF平面ABFD.(2)解如图,作PHEF,垂足为H.由(1)得,PH平面ABFD.以H为坐标原点,的方向为y轴正方向,|为单位长,建立如图所示的空间直角坐标系Hxyz.由(1)可得,DEPE.又DP2,DE
10、1,所以PE.又PF1,EF2,所以PEPF.所以PH,EH.则H(0,0,0),P,D,.又为平面ABFD的法向量,设DP与平面ABFD所成的角为,则sin |cos,|.所以DP与平面ABFD所成角的正弦值为.思维升华若直线l与平面的夹角为,直线l的方向向量l与平面的法向量n的夹角为,则或,故有sin |cos |.跟踪训练2(2018全国)如图,在三棱锥PABC中,ABBC2,PAPBPCAC4,O为AC的中点.(1)证明:PO平面ABC;(2)若点M在棱BC上,且二面角MPAC为30,求PC与平面PAM所成角的正弦值.(1)证明因为PAPCAC4,O为AC的中点,所以OPAC,且OP2
11、.如图,连接OB.因为ABBCAC,所以ABC为等腰直角三角形,所以OBAC,OBAC2.由OP2OB2PB2知POOB.因为OPOB,OPAC,OBACO,OB,AC平面ABC,所以PO平面ABC.(2)解由(1)知OP,OB,OC两两垂直,则以O为坐标原点,分别以OB,OC,OP所在直线为x轴、y轴、z轴,建立空间直角坐标系Oxyz,如图所示.由已知得O(0,0,0),B(2,0,0),A(0,2,0),C(0,2,0),P(0,0,2),(0,2,2).由(1)知平面PAC的一个法向量为(2,0,0).设M(a,2a,0)(0a2),则(a,4a,0).设平面PAM的法向量为n(x,y,
12、z).由n0,n0,得可取ya,得平面PAM的一个法向量为n(a4),a,a),所以cos,n.由已知可得|cos,n|cos 30,所以,解得a4(舍去)或a.所以n.又(0,2,2),所以cos,n.所以PC与平面PAM所成角的正弦值为.题型三求二面角例3(2018锦州模拟)如图,在梯形ABCD中,ABCD,ADDCCB2,ABC60,平面ACEF平面ABCD,四边形ACEF是菱形,CAF60.(1)求证:BFAE;(2)求二面角BEFD的平面角的正切值.(1)证明依题意,在等腰梯形ABCD中,AC2,AB4,BC2,AC2BC2AB2,即BCAC,又平面ACEF平面ABCD,平面ACEF
13、平面ABCDAC,BC平面ABCD,BC平面ACEF,而AE平面ACEF,AEBC,连接CF,四边形ACEF为菱形,AEFC,又BCCFC,BC,CF平面BCF,AE平面BCF,BF平面BCF,BFAE.(2)解取EF的中点M,连接MC,四边形ACEF是菱形,且CAF60,由平面几何易知MCAC,又平面ACEF平面ABCD,平面ACEF平面ABCDAC,CM平面ACEF,MC平面ABCD.以CA,CB,CM所在直线分别为x,y,z轴建立空间直角坐标系,各点的坐标依次为C(0,0,0),A(2,0,0),B(0,2,0),D(,1,0),E(,0,3),F(,0,3),设平面BEF和平面DEF的
14、一个法向量分别为n1(a1,b1,c1),n2(a2,b2,c2),(,2,3),(2,0,0),即即不妨令b13,则n1(0,3,2),同理可求得n2(0,3,1),设二面角BEFD的大小为,由图易知为锐角,cos |cosn1,n2|,故二面角BEFD的平面角的正切值为.思维升华利用向量法求二面角的大小的关键是确定平面的法向量,求法向量的方法主要有两种:求平面的垂线的方向向量;利用法向量与平面内两个不共线向量的数量积为零,列方程组求解.跟踪训练3(2018全国)如图,边长为2的正方形ABCD所在的平面与半圆弧所在平面垂直,M是上异于C,D的点. (1)证明:平面AMD平面BMC;(2)当三
15、棱锥MABC体积最大时,求平面MAB与平面MCD所成二面角的正弦值.(1)证明由题设知,平面CMD平面ABCD,交线为CD.因为BCCD,BC平面ABCD,所以BC平面CMD,又DM平面CMD,故BCDM.因为M为上异于C,D的点,且DC为直径,所以DMCM.又BCCMC,BC,CM平面BMC,所以DM平面BMC.又DM平面AMD,故平面AMD平面BMC.(2)解以D为坐标原点,的方向为x轴正方向,建立如图所示的空间直角坐标系Dxyz.当三棱锥MABC体积最大时,M为的中点.由题设得D(0,0,0),A(2,0,0),B(2,2,0),C(0,2,0),M(0,1,1),(2,1,1),(0,
16、2,0),(2,0,0),设n(x,y,z)是平面MAB的法向量,则即可取n(1,0,2),是平面MCD的一个法向量,因此cosn,sinn,.所以平面MAB与平面MCD所成二面角的正弦值是.利用空间向量求空间角例(12分)如图,四棱锥SABCD中,ABD为正三角形,BCD120,CBCDCS2,BSD90.(1)求证:AC平面SBD;(2)若SCBD,求二面角ASBC的余弦值.(1)证明设ACBDO,连接SO,如图,因为ABAD,CBCD,所以AC是BD的垂直平分线,即O为BD的中点,且ACBD.1分在BCD中,因为CBCD2,BCD120,所以BD2,CO1.在RtSBD中,因为BSD90
17、,O为BD的中点,所以SOBD.在SOC中,因为CO1,SO,CS2,所以SO2CO2CS2,所以SOAC.4分因为BDSOO,BD,SO平面SBD,所以AC平面SBD.5分(2)解方法一过点O作OKSB于点K,连接AK,CK,如图,由(1)知AC平面SBD,所以AOSB.因为OKAOO,OK,AO平面AOK,所以SB平面AOK.6分因为AK平面AOK,所以AKSB.同理可证CKSB.7分所以AKC是二面角ASBC的平面角.因为SCBD,由(1)知ACBD,且ACSCC,AC,SC平面SAC,所以BD平面SAC.而SO平面SAC,所以SOBD.在RtSOB中,OK.在RtAOK中,AK,同理可
展开阅读全文