神奇巧解高考数学选择题专题参考模板范本.doc
- 【下载声明】
1. 本站全部试题类文档,若标题没写含答案,则无答案;标题注明含答案的文档,主观题也可能无答案。请谨慎下单,一旦售出,不予退换。
2. 本站全部PPT文档均不含视频和音频,PPT中出现的音频或视频标识(或文字)仅表示流程,实际无音频或视频文件。请谨慎下单,一旦售出,不予退换。
3. 本页资料《神奇巧解高考数学选择题专题参考模板范本.doc》由用户(林田)主动上传,其收益全归该用户。163文库仅提供信息存储空间,仅对该用户上传内容的表现方式做保护处理,对上传内容本身不做任何修改或编辑。 若此文所含内容侵犯了您的版权或隐私,请立即通知163文库(点击联系客服),我们立即给予删除!
4. 请根据预览情况,自愿下载本文。本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
5. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007及以上版本和PDF阅读器,压缩文件请下载最新的WinRAR软件解压。
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 神奇 高考 数学 选择题 专题 参考 模板 范本 下载 _二轮专题_高考专区_数学_高中
- 资源描述:
-
1、神奇巧解高考数学选择题专题前 言高考数学选择题,知识覆盖面宽,概括性强,小巧灵活,有一定深度与综合性,而且分值大,能否迅速、准确地解答出来,成为全卷得分的关键。选择题的解答思路不外乎两条:一是直接法,即从题干出发,探求结果,这类选择题通常用来考核考生最起码的基础知识和基本技能,这一般适用于题号在前16的题目;二是间接法,即从选项出发,或者将题干与选项联合考察而得到结果。因为选择题有备选项,又无须写出解答过程,因此存在一些特殊的解答方法,可以快速准确地得到结果,这就是间接法。这类选择题通常用来考核考生的思维品质,包括思维的广阔性和深刻性、独立性和批判性 、逻辑性和严谨性 、灵活性和敏捷性 以及创
2、造性;同直接法相比,间接法所需要的时间可能是直接法的几分之一甚至几十分之一,是节约解题时间的重要手段。然而,有相当一部分考生对于用间接手段解题并不放心,认为这样做“不可靠”,以至于在用间接法做过以后又用直接法再做一遍予以验证;甚至有思想不解放的,认为这样做“不道德”,而不明白这其实正是高考命题者的真实意图所在,高考正是利用选择题作为甄别不同层次思维能力的考生的一种重要手段。解选择题常见的方法包括数形结合、特值代验、逻辑排除、逐一验证、等价转化、巧用定义、直觉判断、趋势判断、估计判断、退化判断、直接解答、现场操作,等等。考生应该有意识地积累一些经典题型,分门别类,经常玩味,以提高自己在这方面的能
3、力。下面主要就间接法分别举例说明之,并配备足够的对应练习题,每题至少提供有一种解法。例题与题组一、数形结合画出图形或者图象能够使问题提供的信息更直观地呈现,从而大大降低思维难度,是解决数学问题的有力策略,这种方法使用得非常之多。【例题】、(07江苏6)设函数定义在实数集上,它的图象关于直线对称,且当时,则有( )。A、 B、 C、 D【解析】、当时,的图象关于直线对称,则图象如图所示。这个图象是个示意图,事实上,就算画出的图象代替它也可以。由图知,符合要求的选项是B,【练习1】、若P(2,-1)为圆的弦AB的中点,则直线AB的方程是( )A、 B、 C、 D、(提示:画出圆和过点P的直线,再看
4、四条直线的斜率,即可知选A)【练习2】、(07辽宁)已知变量、满足约束条件,则的取值范围是( )A、 B、 C、 D、(提示:把看作可行域内的点与原点所在直线的斜率,不难求得答案 ,选A。)【练习3】、曲线与直线有两个公共点时,的取值范围是( )A、 B、 C、 D、(提示:事实上不难看出,曲线方程的图象为,表示以(1,0)为圆心,2为半径的上半圆,如图。直线过定点(2,4),那么斜率的范围就清楚了,选D)【练习4】、函数在区间A上是增函数,则区间A是( )A、 B、 C、 D、 (提示:作出该函数的图象如右,知应该选B)【练习5】、曲线与直线有两个交点,则的取值范围是( )A、或 B、C、或
5、 D、(提示:作出曲线的图象如右,因为直线与其有两个交点,则或,选A)【练习6】、(06湖南理8)设函数,集合,若,则实数的取值范围是( )A、 B、 C、 D、(提示:数形结合,先画出的图象。当时,图象如左;当时图象如右。由图象知,当时函数在上递增,同时的解集为的真子集,选C)【练习7】、(06湖南理10)若圆上至少有三个不同的点到直线的距离为,则直线的倾斜角的取值范围是( )A、 B、 C、 D、(提示:数形结合,先画出圆的图形。圆方程化为,由题意知,圆心到直线的距离应该满足,在已知圆中画一个半径为的同心圆,则过原点的直线与小圆有公共点,选B。)【练习8】、(07浙江文10)若非零向量a,
6、b满足|a-b|=| b |,则( )A、|2b| | a-2b | B、|2b| | a-2b |C、|2a| | 2a-b | D、|2a| | 2a-b |(提示:关键是要画出向量a,b的关系图,为此先把条件进行等价转换。|a-b|=| b |a-b|2=| b |2 a2+b2-2ab= b2 a(a-2b)=0 a(a-2b),又a-(a-2b)=2b,所以|a|,| a-2b |,|2b|为边长构成直角三角形,|2b|为斜边,如上图,|2b| | a-2b |,选A。另外也可以这样解:先构造等腰OAB,使OB=AB,再构造ROAC,如下图,因为OCAC,所以选A。)【练习9】、方程
7、cosx=lgx的实根的个数是( )A、1 B、2 C、3 D、4(提示:在同一坐标系中分别画出函数cosx与lgx的图象,如图,由两个函数图象的交点的个数为3,知应选C)【练习10】、(06江苏7)若A、B、C为三个集合,则一定有( )A、 B、 C、 D、(提示:若,则成立,排除C、D选项,作出Venn图,可知A成立)【练习11】、(07天津理7)在R上定义的函数是偶函数,且。若在区间1,2上是减函数,则( )A、在区间-2,-1上是增函数,在区间3,4上是增函数B、在区间-2,-1上是增函数,在区间3,4上是减函数C、在区间-2,-1上是减函数,在区间3,4上是增函数D、在区间-2,-1
8、上是减函数,在区间3,4上是减函数(提示:数形结合法,是抽象函数,因此画出其简单图象即可得出结论,如下左图知选B)【练习12】、(07山东文11改编)方程的解的取值区间是( )A、(0,1) B、(1,2) C、(2,3) D、(3,4)(提示:数形结合,在同一坐标系中作出函数的图象,则立刻知选B,如上右图)二、特值代验包括选取符合题意的特殊数值、特殊位置和特殊图形,代入或者比照选项来确定答案。这种方法叫做特值代验法,是一种使用频率很高的方法。【例题】、(93年全国高考)在各项均为正数的等比数列中,若,则( )A、12 B、10 C、8 D、【解析】、思路一(小题大做):由条件有从而,所以原式
9、=,选B。思路二(小题小做):由知原式=,选B。思路三(小题巧做):因为答案唯一,故取一个满足条件的特殊数列即可,选B。【练习1】、(07江西文8)若,则下列命题中正确的是( )A、 B、 C、 D、(提示:取验证即可,选B)【练习2】、(06北京理7)设,则( )A、 B、 C、 D、(提示:思路一:f(n)是以2为首项,8为公比的等比数列的前项的和,所以,选D。这属于直接法。思路2:令,则,对照选项,只有D成立。)【练习3】、(06全国1理9)设平面向量a1、a2、a3的和a1+a2+a3=0,如果平面向量b1、b2、b3满足| bi|=2| ai |,且ai顺时针旋转以后与bi同向,其中
10、i=1、2、3则( )A、-b1+b2+b3=0 B、b1-b2+b3=0 C、b1+b2-b3=0 D、b1+b2+b3=0(提示:因为a1+a2+a3=0,所以a1、a2、a3构成封闭三角形,不妨设其为正三角形,则bi实际上是将三角形顺时针旋转后再将其各边延长2倍,仍为封闭三角形,故选D。)【练习4】、若,则的图象是( )A、 B、 C、 D、(提示:抓住特殊点2,所以对数函数是减函数,图象往左移动一个单位得,必过原点,选A)【练习5】、若函数是偶函数,则的对称轴是( )A、 B、 C、 D、(提示:因为若函数是偶函数,作一个特殊函数,则变为,即知的对称轴是,选C)【练习6】、已知数列an
11、的通项公式为an=2n-1,其前n和为Sn,那么Cn1S1+ Cn2S2+ CnnSn=( )A、2n-3n B、3n -2n C、5n -2n D、3n -4n(提示:愚蠢的解法是:先根据通项公式an=2n-1求得和的公式Sn,再代入式子Cn1S1+ Cn2S2+ CnnSn,再利用二项式展开式的逆用裂项求和得解,有些书上就是这么做的!其实这既然是小题,就应该按照小题的解思路来求做:令n=2,代入式子,再对照选项,选B)【练习7】、(06辽宁理10)直线与曲线()的公共点的个数是( )A、1 B、2 C、3 D、4(提示:取,原方程变为,这是两个椭圆,与直线有4个公共点,选D)【练习8】、如
12、图左,若D、E、F分别是三棱锥S-ABC的侧棱SA、SB、SC上的点,且SD:DA=SE:EB=CF:FS=2:1,那么平面DEF截三棱锥S-ABC所得的上下两部分的体积之比为( )A、4:31 B、6:23 C、4:23 D、2:25(提示:特殊化处理,不妨设三棱锥S-ABC是棱长为3的正三棱锥,K是FC的中点,分别表示上下两部分的体积则,选C)【练习9】、ABC的外接圆的圆心为O,两条边上的高的交点为H,则的取值是( )A、-1 B、1 C、-2 D、2(提示:特殊化处理,不妨设ABC为直角三角形,则圆心O在斜边中点处,此时有,选B。)【练习10】、双曲线方程为,则的取值范围是( )A、
13、B、 C、 D、或(提示:在选项中选一些特殊值例如代入验证即可,选D)三、筛选判断包括逐一验证法将选项逐一代入条件中进行验证,或者逻辑排除法,即通过对四个选项之间的内在逻辑关系进行排除与确定。【例题】、设集合A和B都属于正整数集,映射f:把集合A中的元素n映射到集合B中的元素,则在映射f下,像20的原像是( )A、2 B、3 C、4 D、5【解析】、经逐一验证,在2、3、4、5中,只有4符合方程=20,选C。【练习1】、(06安徽理6)将函数的图象按向量a=平移以后的图象如图所示,则平移以后的图象所对应的函数解析式是( )A、 B、 C、 D、(提示:若选A或B,则周期为,与图象所示周期不符;
14、若选D,则与 “按向量a=平移” 不符,选C。此题属于容易题)【练习2】、(06重庆理9)如图,单位圆中的长度为,表示与弦AB所围成的弓形的面的2倍,则函数的图象是( )22222222A、 B、 C、 D、(提示:解法1 设,则,则S弓形=S扇形- SAOB=,当时,则,其图象位于下方;当时,其图象位于上方。所以只有选D。这种方法属于小题大作。解法2 结合直觉法逐一验证。显然,面积不是弧长的一次函数,排除A;当从很小的值逐渐增大时,的增长不会太快,排除B;只要则必然有面积,排除C,选D。事实上,直觉好的学生完全可以直接选D)【练习3】、(06天津文8)若椭圆的中心点为E(-1,0),它的一个
15、焦点为F(-3,0),相应于焦点的准线方程是,则这个椭圆的方程是( )A、 B、 C、 D、(提示:椭圆中心为(-1,0),排除A、C,椭圆相当于向左平移了1个单位长度,故c=2,选D)【练习4】、不等式的解集是( )A、 B、 C、 D、(提示:如果直接解,差不多相当于一道大题!取,代入原不等式,成立,排除B、C;取,排除D,选A)【练习5】、(06江西理12)某地一年内的气温Q(t)()与时间t(月份)之间的关系如右图,已知该年的平均气温为10。令C(t)表示时间段0,t的平均气温,C(t)与t之间的函数关系如下图,则正确的应该是( )A、 B、 C、 D、(提示:由图可以发现,t=6时,
16、C(t)=0,排除C;t=12时,C(t)=10,排除D;t6时的某一段气温超过10,排除B,选A。)【练习6】、集合与集合之间的关系是( )A、 B、 C、 D、(提示:C、D是矛盾对立关系,必有一真,所以A、B均假; 表示全体奇数,也表示奇数,故且B假,只有C真,选C。此法扣住了概念之间矛盾对立的逻辑关系。当然,此题用现场操作法来解也是可以的,即令k=0,1,2,3,然后观察两个集合的关系就知道答案了。)【练习7】、当时,恒成立,则的一个可能的值是( )A、5 B、 C、 D、(提示:若选项A正确,则B、C、D也正确;若选项B正确,则C、D也正确;若选项C正确,则D也正确。选D)【练习8】
17、、(01广东河南10)对于抛物线上任意一点Q,点P(a,0)都满足,则的取值范围是( )A、 B、 C、 D、(提示:用逻辑排除法。画出草图,知a0符合条件,则排除C、D;又取,则P是焦点,记点Q到准线的距离为d,则由抛物线定义知道,此时ad|PQ|,即表明符合条件,排除A,选B。另外,很多资料上解此题是用的直接法,照录如下,供“不放心”的读者比较设点Q的坐标为,由,得,整理得, ,即恒成立,而的最小值是2,选B)【练习9】、(07全国卷理12)函数的一个单调增区间是( )A、 B、 C、 D、(提示:“标准”答案是用直接法通过求导数解不等式组,再结合图象解得的,选A。建议你用代入验证法进行筛
18、选:因为函数是连续的,选项里面的各个端点值其实是可以取到的,由,显然直接排除D,在A、B、C中只要计算两个即可,因为B中代入会出现,所以最好只算A、C、现在就验算A,有,符合,选A)四、等价转化解题的本质就是转化,能够转化下去就能够解下去。至于怎样转化,要通过必要的训练,达到见识足、技能熟的境界。在解有关排列组合的应用问题中这一点显得尤其重要。【例题】、(05辽宁12)一给定函数的图象在下列图中,并且对任意,由关系式得到的数列满足,则该函数的图象是( )A、 B、 C、 D、【解析】问题等价于对函数图象上任一点都满足,只能选A。【练习1】、设,且sin3+ cos3,则的取值范围是( )A、-
19、,0) B、 C、(-1,0) D、(-,0)(提示:因为sin3+ cos3=(sin+ cos)(sin2- sincos+ cos2),而sin2- sincos+ cos20恒成立,故sin3+ cos3t0,选A。另解:由sin3+ cos3 知非锐角,而我们知道只有为锐角或者直角时,所以排除B、C、D,选A)【练习2】、是椭圆的左、右焦点,点P在椭圆上运动,则的最大值是( )A、4 B、5 C、1 D、2(提示:设动点P的坐标是,由是椭圆的左、右焦点得,则,选D。这里利用椭圆的参数方程把问题等价转化为三角函数求最值的问题。特别提醒:下列“简捷”解法是掉进了命题人的“陷阱”的)【练习
20、3】、若,则( )。 A、 B、 C、 D、(提示:利用换底公式等价转化。,选B)【练习4】、且,则( )A、 B、 C、 D、(提示:此题条件较多,又以符号语言出现,令人眼花缭乱。对策之一是“符号语言图形化”,如图 ,用线段代表立马知道选C。当然这也属于数形结合方法。对策之二是“抽象语言具体化”, 分别用数字1,4,2,3代表容易知道选C。也许你认为对策一的转化并不等价,是的,但是作为选择题,可以事先把条件“”收严一些变为“”。【练习5】、已知若函数在上单调递增,则的取值范围是( )A、 B、 C、 D、(提示: 化简得,在上递增,而在上单调递增,又选B)【练习6】、把10个相同的小球放入编
展开阅读全文