函数展开成幂级数讲解课件.ppt
- 【下载声明】
1. 本站全部试题类文档,若标题没写含答案,则无答案;标题注明含答案的文档,主观题也可能无答案。请谨慎下单,一旦售出,不予退换。
2. 本站全部PPT文档均不含视频和音频,PPT中出现的音频或视频标识(或文字)仅表示流程,实际无音频或视频文件。请谨慎下单,一旦售出,不予退换。
3. 本页资料《函数展开成幂级数讲解课件.ppt》由用户(三亚风情)主动上传,其收益全归该用户。163文库仅提供信息存储空间,仅对该用户上传内容的表现方式做保护处理,对上传内容本身不做任何修改或编辑。 若此文所含内容侵犯了您的版权或隐私,请立即通知163文库(点击联系客服),我们立即给予删除!
4. 请根据预览情况,自愿下载本文。本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
5. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007及以上版本和PDF阅读器,压缩文件请下载最新的WinRAR软件解压。
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 函数 展开 幂级数 讲解 课件
- 资源描述:
-
1、19-5 函数展开成幂级数函数展开成幂级数 2定理定理 若幂级数若幂级数nnnxa0的收敛半径的收敛半径,0R)(xS数则其和函则其和函在收敛域上在收敛域上连续连续;且在收敛区间内可且在收敛区间内可逐项求导逐项求导与与逐项求积分逐项求积分,运算前后收敛半径相同,运算前后收敛半径相同,即即00limnnxxna x 00lim()nnxxna x x 收敛域收敛域0()nnnS xa x (,)xR R (,)xR R 0()nnna x 0()nnna x 00()dxnnna xx 00()dxnnna xx 复习复习3 求部分和式的极限求部分和式的极限二、幂级数和函数的求法二、幂级数和函数
2、的求法 求和求和逐项求导或求积分法逐项求导或求积分法 逐项求导或求积分逐项求导或求积分0()nnna x *()Sx对和式积分或求导对和式积分或求导)(xS难难(在收敛区间内)(在收敛区间内)nnnxa04第五节本节内容本节内容:一、泰勒一、泰勒(Taylor)级数级数 二、函数展开成幂级数二、函数展开成幂级数 函数展开成幂级数 第九章 展开方法展开方法直接展开法直接展开法间接展开法间接展开法5则称函数在该区间内能展开成幂级数则称函数在该区间内能展开成幂级数给定函数给定函数(),f x如果能找到一个幂级数,使得如果能找到一个幂级数,使得函数能展开成幂级数的定义函数能展开成幂级数的定义:它在某区
3、间内收敛,且其和恰好就是给定的函数它在某区间内收敛,且其和恰好就是给定的函数(),f x)(xf0nnna x 例如例如:xe 23111,2!3!xxxx ln(1)x23,1123xxxx 6则称函数在该区间内能展开成幂级数则称函数在该区间内能展开成幂级数给定函数给定函数(),f x如果能找到一个幂级数,使得如果能找到一个幂级数,使得函数能展开成幂级数的定义函数能展开成幂级数的定义:它在某区间内收敛,且其和恰好就是给定的函数它在某区间内收敛,且其和恰好就是给定的函数(),f x)(xf0nnna x 问题问题:1.如果能展开如果能展开,是什么是什么?na2.展开式是否唯一展开式是否唯一?3
4、.在什么条件下才能展开成幂级数在什么条件下才能展开成幂级数?7则称函数在该区间内能展开成幂级数则称函数在该区间内能展开成幂级数给定函数给定函数(),f x如果能找到一个幂级数,使得如果能找到一个幂级数,使得函数能展开成幂级数的定义函数能展开成幂级数的定义:它在某区间内收敛,且其和恰好就是给定的函数它在某区间内收敛,且其和恰好就是给定的函数(),f x)(xf0nnna x 例如例如:xe 23111,2!3!xxxx xe 231111()2!3!nnxxxxRxn无穷级数无穷级数有限形式有限形式表示函数表示函数8一、泰勒一、泰勒(Taylor)级数级数 )()(0 xfxf)(00 xxxf
5、200)(!2)(xxxf nnxxnxf)(!)(00)()(xRn其中其中)(xRn(在在 x 与与 x0 之间之间)称为称为拉格朗日余项拉格朗日余项.10)1()(!)1()(nnxxnf则在则在若函数若函数0)(xxf在的某邻域内具有的某邻域内具有 n+1 阶导数阶导数,此式称为此式称为 f(x)的的 n 阶泰勒公式阶泰勒公式,该邻域内有该邻域内有:9)(0 xf)(00 xxxf200)(!2)(xxxf nnxxnxf)(!)(00)(为为f(x)的的泰勒级数泰勒级数.则称则称待解决的问题待解决的问题:若函数若函数的某邻域内具有的某邻域内具有任意阶任意阶导数导数,0)(xxf在当当
6、x0=0 时时,泰勒级数泰勒级数 又称为又称为麦克劳林级数麦克劳林级数.0)(!)0(nnnxnf()000()()!nnnfxx xn )(xfnnnxxnxf)(!)(000)()(xf()000()()()!nnnnnfxxxR xn 10定理定理1.各阶导数各阶导数,)(0 x则则 f(x)在该邻域内能展开成泰勒级数的在该邻域内能展开成泰勒级数的充要充要条件条件是是 f(x)的泰勒公式中的余项满足的泰勒公式中的余项满足:lim()0.nnR x 证明证明:()000()()(),!nnnfxf xxxn )()()(1xRxSxfnn)(limxRnn)()(lim1xSxfnn,0)
7、(0 xx()0100()()()!knknkfxSxxxk令)(0 xx设函数设函数 f(x)在点在点 x0 的某一邻域的某一邻域 内具有内具有11定理定理2.若若 f(x)能展成能展成 x 的幂级数的幂级数,则这种展开式是则这种展开式是惟一惟一的的,且且证证:设设 f(x)所展成的幂级数为所展成的幂级数为),(,)(2210RRxxaxaxaaxfnn则则;2)(121nnxnaxaaxf)0(1fa;)1(!2)(22 nnxannaxf)0(!212fa;!)()(nnanxf)0()(!1nnnfa 显然结论成立显然结论成立.)0(0fa()1(0)(0,1,2,)!nnafnn ,
8、12001()()nnnf xa xx )用用可可构构造造,()00,1,2,1()()!nnafxnn 其其中中,()000()3()()lim()0!nnnnnfxf xxxRxn ),0()xx )(xf0nnna x 问题问题:1.如果能展开如果能展开,是什么是什么?na2.展开式是否唯一展开式是否唯一?3.在什么条件下才能展开成幂级数在什么条件下才能展开成幂级数?13二、函数展开成幂级数二、函数展开成幂级数 1.直接展开法直接展开法 由泰勒级数理论可知,展开成幂级数的步函数)(xf第一步第一步第三步第三步 判别在收敛区间(R,R)内lim()nnRx是否为骤如下:展开方法展开方法直接
展开阅读全文