书签 分享 收藏 举报 版权申诉 / 18
上传文档赚钱

类型利用三角形的角平分线构造全等三角形-PPT课件-人教版.ppt

  • 上传人(卖家):三亚风情
  • 文档编号:3439572
  • 上传时间:2022-08-31
  • 格式:PPT
  • 页数:18
  • 大小:595.50KB
  • 【下载声明】
    1. 本站全部试题类文档,若标题没写含答案,则无答案;标题注明含答案的文档,主观题也可能无答案。请谨慎下单,一旦售出,不予退换。
    2. 本站全部PPT文档均不含视频和音频,PPT中出现的音频或视频标识(或文字)仅表示流程,实际无音频或视频文件。请谨慎下单,一旦售出,不予退换。
    3. 本页资料《利用三角形的角平分线构造全等三角形-PPT课件-人教版.ppt》由用户(三亚风情)主动上传,其收益全归该用户。163文库仅提供信息存储空间,仅对该用户上传内容的表现方式做保护处理,对上传内容本身不做任何修改或编辑。 若此文所含内容侵犯了您的版权或隐私,请立即通知163文库(点击联系客服),我们立即给予删除!
    4. 请根据预览情况,自愿下载本文。本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
    5. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007及以上版本和PDF阅读器,压缩文件请下载最新的WinRAR软件解压。
    配套讲稿:

    如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。

    特殊限制:

    部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。

    关 键  词:
    利用 三角形 平分线 构造 全等 PPT 课件 人教版
    资源描述:

    1、如何利用三角形的中线来构造全等三角形?如何利用三角形的中线来构造全等三角形?复习:复习:可以利用可以利用倍长中线法倍长中线法,即把中线,即把中线延长一倍,来构造全等三角形。延长一倍,来构造全等三角形。如图,若如图,若AD为为ABC的中线,的中线,必有结论必有结论:ABCDE12 延长延长AD到到E,使,使DE=AD,连结连结BE(也可连结(也可连结CE)。)。ABD ECD,1=E,B=2,EC=AB,CEAB。可以利用角平分线所在直可以利用角平分线所在直线作对称轴,翻折三角形来线作对称轴,翻折三角形来构造全等三角形。构造全等三角形。如何利用三角形的角平分线来构如何利用三角形的角平分线来构造全

    2、等三角形?造全等三角形?问题:问题:如图,在如图,在ABC中,中,AD平分平分BAC。方法一:方法一:ABCDE必有结论:必有结论:在在AB上截取上截取AE=AC,连结连结DE。ADE ADC。ED=CD,3 3*2 21 1AED=C,ADE=ADC。方法二:方法二:ABCDF延 长延 长 A C 到到 F,使,使AF=AB,连结,连结DF。必有结论:必有结论:ABD AFD。BD=FD,如何利用三角形的角平分线来构如何利用三角形的角平分线来构造全等三角形?造全等三角形?问题:问题:3 3*2 21 1 如图,在如图,在ABC中,中,AD平分平分BAC。可以利用角平分线所在直可以利用角平分线

    3、所在直线作对称轴,翻折三角形来线作对称轴,翻折三角形来构造全等三角形。构造全等三角形。B=F,ADB=ADF。如何利用三角形的角平分线来构如何利用三角形的角平分线来构造全等三角形?造全等三角形?问题:问题:ABCDMN方法三:方法三:作作DMAB于于 M,DNAC于于N。必有结论:必有结论:AMD AND。DM=DN,3 3*2 21 1 如图,在如图,在ABC中,中,AD平分平分BAC。可以利用角平分线所在直可以利用角平分线所在直线作对称轴,翻折三角形来线作对称轴,翻折三角形来构造全等三角形。构造全等三角形。AM=AN,ADM=AND。(还可以用(还可以用“角平分线上的点到角的两角平分线上的

    4、点到角的两边距离相等边距离相等”来证来证DM=DN)证明证明:例例1 1已知:如图,在四边形已知:如图,在四边形ABCDABCD中,中,BDBD是是ABCABC的的角平分线,角平分线,AD=CDAD=CD,求证:,求证:A+C=180A+C=180DABCE在在BC上截取上截取BE,使,使BE=AB,连结,连结DE。BD是是ABC的角平分线(已知)的角平分线(已知)1=2(角平分线定义)(角平分线定义)在在ABD和和EBD中中 AB=EB(已知)(已知)1=2(已证)(已证)BD=BD(公共边)(公共边)ABD EBD(S.A.S)1243 3+4180(平角定义),(平角定义),A3(已证)

    5、(已证)A+C180 (等量代换)(等量代换)3 32 21 1*A3(全等三角形的对应角相等)(全等三角形的对应角相等)AD=CD(已知),(已知),AD=DE(已证)(已证)DE=DC(等量代换)(等量代换)4=C(等边对等角)(等边对等角)AD=DE(全等三角形的对应边相等)(全等三角形的对应边相等)证明证明:例例1 1已知:如图,在四边形已知:如图,在四边形ABCDABCD中,中,BDBD是是ABCABC的的角平分线,角平分线,AD=CDAD=CD,求证:,求证:A+C=180A+C=180DABCF延长延长BA到到F,使,使BF=BC,连结,连结DF。BD是是ABC的角平分线(已知)

    6、的角平分线(已知)1=2(角平分线定义)(角平分线定义)在在BFD和和BCD中中 BF=BC(已知)(已知)1=2(已证)(已证)BD=BD(公共边)(公共边)BFD BCD(S.A.S)1243 FC(已证)(已证)4=C(等量代换)(等量代换)3 32 21 1*FC(全等三角形的对应角相等)(全等三角形的对应角相等)AD=CD(已知),(已知),DF=DC(已证)(已证)DF=AD(等量代换)(等量代换)4=F(等边对等角)(等边对等角)3+4180 (平角定义)(平角定义)A+C180 (等量代换)(等量代换)DF=DC(全等三角形的对应边相等)(全等三角形的对应边相等)证明证明:例例

    7、1 1已知:如图,在四边形已知:如图,在四边形ABCDABCD中,中,BDBD是是ABCABC的的角平分线,角平分线,AD=CDAD=CD,求证:,求证:A+C=180A+C=180DABCM作作DMBC于于M,DNBA交交BA的延长线于的延长线于N。BD是是ABC的角平分线(已知)的角平分线(已知)1=2(角平分线定义)(角平分线定义)DNBA,DMBC(已知)(已知)N=DMB=90(垂直的定义)(垂直的定义)在在NBD和和MBD中中 N=DMB(已证)(已证)1=2(已证)(已证)BD=BD(公共边)(公共边)NBD MBD(A.A.S)12 4=C(全等三角形的对应角相等)(全等三角形

    8、的对应角相等)N433 32 21 1*ND=MD(全等三角形的对应边相等)(全等三角形的对应边相等)DNBA,DMBC(已知)(已知)NAD和和MCD是是Rt在在RtNAD和和RtMCD中中 ND=MD(已证)(已证)AD=CD(已知)(已知)RtNAD RtMCD(H.L)3+4180(平角定义),(平角定义),A3(已证)(已证)A+C180(等量代换)(等量代换)证明证明:例例1 1已知:如图,在四边形已知:如图,在四边形ABCDABCD中,中,BDBD是是ABCABC的的角平分线,角平分线,AD=CDAD=CD,求证:,求证:A+C=180A+C=180DABCM作作DMBC于于M,

    9、DNBA交交BA的延长线于的延长线于N。12N433 32 21 1*BD是是ABC的角平分线(已知)的角平分线(已知)DNBA,DMBC(已知)(已知)ND=MD(角平分线上的点到这(角平分线上的点到这 个角的两边距离相等)个角的两边距离相等)4=C (全等三角形的对应角相等)(全等三角形的对应角相等)DNBA,DMBC(已知)(已知)NAD和和MCD是是Rt在在RtNAD和和RtMCD中中 ND=MD(已证)(已证)AD=CD(已知)(已知)RtNAD RtMCD(H.L)3+4180(平角定义)(平角定义)A3(已证)(已证)A+C180(等量代换)(等量代换)练习练习1 1如图,已知如

    10、图,已知ABCABC中,中,ADAD是是BACBAC的角平分线,的角平分线,AB=AC+CDAB=AC+CD,求证:,求证:C=2BC=2BABCDE122 21 1证明证明:在在AB上截取上截取AE,使,使AE=AC,连结,连结DE。AD是是BAC的角平分线(已知)的角平分线(已知)1=2(角平分线定义)(角平分线定义)在在AED和和ACD中中 AE=AC(已知)(已知)1=2(已证)(已证)AD=AD(公共边)(公共边)AED ACD(S.A.S)3B=4(等边对等角)(等边对等角)4*C3(全等三角形的对应角相等(全等三角形的对应角相等)又又 AB=AC+CD=AE+EB(已知)(已知)

    11、EB=DC=ED(等量代换)(等量代换)3=B+4=2B(三角形的一个外角等于(三角形的一个外角等于和它不相邻的两个内角和)和它不相邻的两个内角和)C=2B(等量代换)(等量代换)ED=CD(全等三角形的对应边相等)(全等三角形的对应边相等)练习练习1 1如图,已知如图,已知ABCABC中,中,ADAD是是BACBAC的角平分线,的角平分线,AB=AC+CDAB=AC+CD,求证:,求证:C=2BC=2BABCDF12证明证明:延长延长AC到到F,使,使CF=CD,连结,连结DF。AD是是BAC的角平分线(已知)的角平分线(已知)1=2(角平分线定义)(角平分线定义)AB=AC+CD,CF=C

    12、D(已知)(已知)AB=AC+CF=AF(等量代换)(等量代换)ACB=2F(三角形(三角形的一个外角等于和它不相的一个外角等于和它不相邻的两个内角和)邻的两个内角和)ACB=2B(等量代换)(等量代换)32 21 1*在在ABD和和AFD中中 AB=AF(已证)(已证)1=2(已证)(已证)AD=AD(公共边)(公共边)ABD AFD(S.A.S)FB(全等三角形的对应角相等)(全等三角形的对应角相等)CF=CD(已知)(已知)B=3(等边对等角)(等边对等角)练习练习2 2如图,已知直线如图,已知直线MNPQMNPQ,且,且AEAE平分平分BANBAN、BEBE平分平分QBAQBA,DCD

    13、C是过是过E E的任意线段,交的任意线段,交MNMN于点于点D D,交,交PQPQ于点于点C C。求证:。求证:AD+AB=BCAD+AB=BC。证明证明:延长延长AEAE,交直线,交直线PQPQ于点于点F F。*3 30 0*22222121ABCDEMNPQ1234F5练习练习2 2如图,已知直线如图,已知直线MNPQMNPQ,且,且AEAE平分平分BANBAN、BEBE平分平分QBAQBA,DCDC是过是过E E的任意线段,交的任意线段,交MNMN于点于点D D,交,交PQPQ于点于点C C。求证:。求证:AD+AB=BCAD+AB=BC。证明证明:延长延长BABA到点到点G G,使得,

    14、使得AG=ADAG=AD,连结,连结EGEG。*3 30 0*22222121ABCDEMNPQ1234G练习练习2 2如图,已知直线如图,已知直线MNPQMNPQ,且,且AEAE平分平分BANBAN、BEBE平分平分QBAQBA,DCDC是过是过E E的任意线段,交的任意线段,交MNMN于点于点D D,交,交PQPQ于点于点C C。求证:。求证:AD+AB=BCAD+AB=BC。证明证明:延长延长BABA到点到点G G,使得,使得AG=ADAG=AD,连结,连结EGEG。*3 30 0*22222121ABCDEMNPQ1234G练习练习3 3 已知:如图在已知:如图在RtRtABCABC中

    15、,中,BAC=90BAC=90,AEBCAEBC,BDBD是是ABCABC的角平分线,的角平分线,GFBC GFBC,求证:,求证:AD=FCAD=FC。ABCDEH12证明证明:过过D D作作DHBCDHBC,垂足为,垂足为H H。GF*3 30 0*如何利用三角形的角平分线来构造全等三角形?如何利用三角形的角平分线来构造全等三角形?小结:小结:(3)作)作 D M A B 于于 M,DNAC于于N。(1)在)在AB上截取上截取AE=AC,连结连结DE。(2)延长)延长AC到到F,使,使AF=AB,连结连结DF。ABCDEFMN必有结论:必有结论:ADE ADC。必有结论:必有结论:ABD

    16、AFD。必有结论:必有结论:AMD AND。可以利用角平分线所在直线作对称轴,可以利用角平分线所在直线作对称轴,翻折三角形来构造全等三角形。翻折三角形来构造全等三角形。如图,在如图,在ABC中,中,AD为为BAC的角平分线。的角平分线。*3 30 0*如何利用三角形的高来构造全等三角形?如何利用三角形的高来构造全等三角形?如图,在如图,在ABC中,中,ADBC,ABC=2C。求证:求证:AB+BD=CD提示:提示:(1 1)延长)延长DBDB到点到点E E,使使BE=ABBE=AB,连结,连结AEAE。(2 2)在)在DCDC上截取点上截取点E E,使使DE=BDDE=BD,连结,连结AEAE

    17、。ABCD*0 0*1、再长的路一步一步得走也能走到终点,再近的距离不迈开第一步永远也不会到达。2、从善如登,从恶如崩。3、现在决定未来,知识改变命运。4、当你能梦的时候就不要放弃梦。5、龙吟八洲行壮志,凤舞九天挥鸿图。6、天下大事,必作于细;天下难事,必作于易。7、当你把高尔夫球打不进时,球洞只是陷阱;打进时,它就是成功。8、真正的爱,应该超越生命的长度、心灵的宽度、灵魂的深度。9、永远不要逃避问题,因为时间不会给弱者任何回报。10、评价一个人对你的好坏,有钱的看他愿不愿对你花时间,没钱的愿不愿意为你花钱。11、明天是世上增值最快的一块土地,因它充满了希望。12、得意时应善待他人,因为你失意

    18、时会需要他们。13、人生最大的错误是不断担心会犯错。14、忍别人所不能忍的痛,吃别人所不能吃的苦,是为了收获别人得不到的收获。15、不管怎样,仍要坚持,没有梦想,永远到不了远方。16、心态决定命运,自信走向成功。17、第一个青春是上帝给的;第二个的青春是靠自己努力的。18、励志照亮人生,创业改变命运。19、就算生活让你再蛋疼,也要笑着学会忍。20、当你能飞的时候就不要放弃飞。21、所有欺骗中,自欺是最为严重的。22、糊涂一点就会快乐一点。有的人有的事,想得太多会疼,想不通会头疼,想通了会心痛。23、天行健君子以自强不息;地势坤君子以厚德载物。24、态度决定高度,思路决定出路,细节关乎命运。25

    19、、世上最累人的事,莫过於虚伪的过日子。26、事不三思终有悔,人能百忍自无忧。27、智者,一切求自己;愚者,一切求他人。28、有时候,生活不免走向低谷,才能迎接你的下一个高点。29、乐观本身就是一种成功。乌云后面依然是灿烂的晴天。30、经验是由痛苦中粹取出来的。31、绳锯木断,水滴石穿。32、肯承认错误则错已改了一半。33、快乐不是因为拥有的多而是计较的少。34、好方法事半功倍,好习惯受益终身。35、生命可以不轰轰烈烈,但应掷地有声。36、每临大事,心必静心,静则神明,豁然冰释。37、别人认识你是你的面容和躯体,人们定义你是你的头脑和心灵。38、当一个人真正觉悟的一刻,他放弃追寻外在世界的财富,

    20、而开始追寻他内心世界的真正财富。39、人的价值,在遭受诱惑的一瞬间被决定。40、事虽微,不为不成;道虽迩,不行不至。41、好好扮演自己的角色,做自己该做的事。42、自信人生二百年,会当水击三千里。43、要纠正别人之前,先反省自己有没有犯错。44、仁慈是一种聋子能听到、哑巴能了解的语言。45、不可能!只存在于蠢人的字典里。46、在浩瀚的宇宙里,每天都只是一瞬,活在今天,忘掉昨天。47、小事成就大事,细节成就完美。48、凡真心尝试助人者,没有不帮到自己的。49、人往往会这样,顺风顺水,人的智力就会下降一些;如果突遇挫折,智力就会应激增长。50、想像力比知识更重要。不是无知,而是对无知的无知,才是知

    21、的死亡。51、对于最有能力的领航人风浪总是格外的汹涌。52、思想如钻子,必须集中在一点钻下去才有力量。53、年少时,梦想在心中激扬迸进,势不可挡,只是我们还没学会去战斗。经过一番努力,我们终于学会了战斗,却已没有了拼搏的勇气。因此,我们转向自身,攻击自己,成为自己最大的敌人。54、最伟大的思想和行动往往需要最微不足道的开始。55、不积小流无以成江海,不积跬步无以至千里。56、远大抱负始于高中,辉煌人生起于今日。57、理想的路总是为有信心的人预备着。58、抱最大的希望,为最大的努力,做最坏的打算。59、世上除了生死,都是小事。从今天开始,每天微笑吧。60、一勤天下无难事,一懒天下皆难事。61、在

    22、清醒中孤独,总好过于在喧嚣人群中寂寞。62、心里的感觉总会是这样,你越期待的会越行越远,你越在乎的对你的伤害越大。63、彩虹风雨后,成功细节中。64、有些事你是绕不过去的,你现在逃避,你以后就会话十倍的精力去面对。65、只要有信心,就能在信念中行走。66、每天告诉自己一次,我真的很不错。67、心中有理想 再累也快乐68、发光并非太阳的专利,你也可以发光。69、任何山都可以移动,只要把沙土一卡车一卡车运走即可。70、当你的希望一个个落空,你也要坚定,要沉着!71、生命太过短暂,今天放弃了明天不一定能得到。72、只要路是对的,就不怕路远。73、如果一个人爱你、特别在乎你,有一个表现是他还是有点怕你。74、先知三日,富贵十年。付诸行动,你就会得到力量。75、爱的力量大到可以使人忘记一切,却又小到连一粒嫉妒的沙石也不能容纳。76、好习惯成就一生,坏习惯毁人前程。77、年轻就是这样,有错过有遗憾,最后才会学着珍惜。78、时间不会停下来等你,我们现在过的每一天,都是余生中最年轻的一天。79、在极度失望时,上天总会给你一点希望;在你感到痛苦时,又会让你偶遇一些温暖。在这忽冷忽热中,我们学会了看护自己,学会了坚强。80、乐观者在灾祸中看到机会;悲观者在机会中看到灾祸。

    展开阅读全文
    提示  163文库所有资源均是用户自行上传分享,仅供网友学习交流,未经上传用户书面授权,请勿作他用。
    关于本文
    本文标题:利用三角形的角平分线构造全等三角形-PPT课件-人教版.ppt
    链接地址:https://www.163wenku.com/p-3439572.html

    Copyright@ 2017-2037 Www.163WenKu.Com  网站版权所有  |  资源地图   
    IPC备案号:蜀ICP备2021032737号  | 川公网安备 51099002000191号


    侵权投诉QQ:3464097650  资料上传QQ:3464097650
       


    【声明】本站为“文档C2C交易模式”,即用户上传的文档直接卖给(下载)用户,本站只是网络空间服务平台,本站所有原创文档下载所得归上传人所有,如您发现上传作品侵犯了您的版权,请立刻联系我们并提供证据,我们将在3个工作日内予以改正。

    163文库