分析仪器检测的确认课件.ppt
- 【下载声明】
1. 本站全部试题类文档,若标题没写含答案,则无答案;标题注明含答案的文档,主观题也可能无答案。请谨慎下单,一旦售出,不予退换。
2. 本站全部PPT文档均不含视频和音频,PPT中出现的音频或视频标识(或文字)仅表示流程,实际无音频或视频文件。请谨慎下单,一旦售出,不予退换。
3. 本页资料《分析仪器检测的确认课件.ppt》由用户(三亚风情)主动上传,其收益全归该用户。163文库仅提供信息存储空间,仅对该用户上传内容的表现方式做保护处理,对上传内容本身不做任何修改或编辑。 若此文所含内容侵犯了您的版权或隐私,请立即通知163文库(点击联系客服),我们立即给予删除!
4. 请根据预览情况,自愿下载本文。本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
5. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007及以上版本和PDF阅读器,压缩文件请下载最新的WinRAR软件解压。
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 分析仪器 检测 的确 课件
- 资源描述:
-
1、仪器分析仪器分析主讲人:王琦2014年6月26日 仪器分析是以物质的物理和物理化学性质为基础建立起来的一种分析方法,根据化学和物理化学的原理测定和鉴别物质的组成、状态、结构及其组分含量的科学,它与化学分析一起同属于分析化学范畴。仪器分析是多种仪器方法的组合,在多种学科中其地位越来越显得重要,它们已不单纯地应用于分析的目的,而是更广泛地应用于研究和解决各种理论和实际问题。仪器分析的内容仪器分析的内容(一)分析速度快,能在短时间内分析多个样品;(二)灵敏度高,对于微量、痕量和超痕量成分测定有更高的准确度;(三)应用范围广,除了能进行定性、定量分析外,还能进行结构分析、物相分析、微区分析、价态分析等
2、,同时还可用于络合物的络合比、稳定常数、酸碱电离常数、分子量的测定等,广泛用于冶金、地质、石油化工、海洋、农业、环境、生物、食品、医药卫生等行业。仪器分析的特点仪器分析的特点(四)选择性高,通过选择和调正测定条件,使共存组分测定时相互间不产生干扰,适于复杂组分试适于复杂组分试样的样的 分析;分析;(五)样品用量少,许多仪器分析法可实现样品无损测定。(六)操作简便,有较好的精密度。(七)组合能力和组合能力和适应性强适应性强,能在线分析;,能在线分析;(八)数据的采集和处理数据的采集和处理易于自动化和智能化易于自动化和智能化仪器分析方法分类仪器分析方法分类 根据用以测量的物质性质物质性质,仪器分析
3、方法主要分为以下几类:(一)电化学分析法(一)电化学分析法 1、电位滴定(测定pH值等)2、离子选择性电极 3、库仑分析法 4、阳极溶出伏安法 5、电位溶出法 6、极谱法 7、电解法(二二)光谱学分析法光谱学分析法(I)分子光谱法 1、紫外分光光度法 2、可见光分光光度法 3、紫外可见发光光度法 4、红外光谱法 5、核磁共振波谱法 6、激光光谱法 7、拉谩光谱法 8、旋光仪 9、光声光谱(2)原子光谱法 1、原子发射光谱法(AES)2、ICP直读光谱法(ICP/AES)3、ICP/质谱法(ICP/MS)4、原子吸收光谱法(AAS)(火焰CP原子吸收光谱法和石墨炉原子吸收光谱法)5、原子荧光光谱
4、法(AFS)6、X射线荧光光谱法(3)粒子束光谱法 1、透射电子显微镜 2、扫描电子显微镜 3、电子探针 4、扫描遂道显微镜 5、电子能谱 6、离子探针(三)色谱分析法三)色谱分析法 1、气相色谱(GC)2、液相色谱(HPLC)3、薄层色谱(TLC)4、超临界色谱 5、毛细管电泳 6、气/质联用(GC/MS)7、液/质联用(HPLC/MS)8、质谱(MS)9、气/质/质(GC/MS/MS)10、液/质/质(HPLC/MS/MS)(四)热分析(四)热分析1、热重分析仪 2、差热分析仪 3、示差扫描能量仪(五)同位素分析(五)同位素分析 1、中子活化仪 2、射线能谱仪 3、核磁共振分析仪(六)生物
5、及生化分析(六)生物及生化分析 1、PCR 2、DNA测序仪 3、各种电泳仪(七)微生物检测七)微生物检测 1、流式细胞仪 2、其它仪器 电化学分析法电化学分析法 根据物质的电学及电化学性质所建立起来的分析方法统称为电分析化学法。它通常是将待测溶液构成一化学电池(电解池或原电池),通过研究或测量化学电池的电学性质(如电极电位、电流、电导及电量等)或电学性质的突变或电解产物的量与电解质溶液组成之间的内在联系以确定试样的含量。根据所测量的物质的电学性质,可将电分析化学法分为电位分析法、伏安及极谱分析法、电导分析法、电解分析法及库仑分析法等。光学分析法光学分析法 光学分析法是根据物质与电磁辐射之间的
6、关系而建立起来的一种物理分析方法。光学分析法可分为光谱法及非光谱法两大类。在光谱法中,与电磁辐射作用的物质分子或原子间有能级间的跃迁存在,如紫外及可见光度分析法、原子发射光谱法、红外及拉曼光谱法等;在非光谱分析法中,不涉及物质分子或原子能级间的跃迁,只改变了电磁辐射的传播方向和物理性质,如折射、散射、衍射、偏振等。非学谱法包括折射法、X-射线衍射法及旋光测定法等。其中以光谱法最丰富,最重要,应用最广泛。根据与电磁辐射作用的物质是以气态原子还是以分子(或离子团)形式存在,可将光谱法分为原子光谱法和分子光谱法两类。原子光谱法包括原子发射光谱法、原子吸收光谱法、原子荧光光谱法和X射线荧光光谱法等。分
7、子光谱法包括紫外及可见光度分析法、分子荧光光谱法、红外及拉曼光谱法。根据物质与电磁辐射相互作用的机理,可将光谱法分为发射光谱法、吸收光谱法、荧光光谱法、拉曼光谱法、X-射线衍射光谱法等。色谱法色谱法 色谱法是一种用来分离、分析多组分混合物质极有效的方法之一。它的分离原理是:混合物中各组分在互不相溶的两相(固定相和流动相)间具有不同的分配系数,当混合物中各组分随着流动相移动通过固定相时,在流动相和固定相之间的进行反复多次的分配,这样就使分配系数不同的各组分在固定相中的滞留时间有长有短,从而按不同的次序先后从固定相中流出。按流动相物理状态的不同,可将色谱法分为气相谱法和液相色谱法两种。气相色谱气体
8、为流动相,液相色谱液体为流动相。色谱法能在较短的时间内对组成极为复杂、各组分性质极为相近的混合物同时进行分离和测定。例如在气相色谱中,用空心毛细管柱一次可以解决石油馏分中的几十个、上百个组分的分离和测定。目前色谱法已成为天然产物、石油化工、医药卫生、环境科学、生命科学、能源科学、有机和无机新型材料等各个研究领域中不可缺少的重要工具。质谱法质谱法 质谱法是通过将样品转化为运动的气态离子并按质荷比(m/z)大小进行分离记录的分析方法获得图谱即为质谱图。根据质谱图提供的信息可以进行多种有机物及无机物的定性和定量分析,复杂化合物的结构分析,样品中各种同位素比的测定及固体表面的结构和组成分析等。例如,质
9、谱检出的离子强度与离子数目成正比,通过离子强度可进行定量分析。质谱仪早期主要用于分子量的测定和定量测定某些复杂碳氢混合物中的各组分等。1960年以后,才开始用于复杂化合物的鉴定和结构分析。实验证明,质谱法是研究有机化合物结构的最有力工具之一。紫外紫外-可见分光光度法可见分光光度法 紫外-可见分光光度法(Ultravioler and Visible Spectrophotometry,UV-Vis)是分子吸收光谱方法,是利用分子对外来辐射的吸收特性建立起来的分析方法,涉及的是分子的价电子在不同分子轨道间能级的跃迁,对应的光谱区范围为180-780nm。紫外-可见分光光度法主要用于分子的定量分析
10、,但紫外光度法为四大波谱之一,是鉴定许多化合物,尤其是有机化合物的重要定性工具之一。随着科学技术的发展,结合现代的光、电和计算机技术,紫外-可见分光光度法具有灵敏度高(可测10-7-10-4g/mL的微量组分),准确度较好(相对误差1%-2%,对微量组分能完全满足要求),仪器价格低廉,操作简便快速等优点,使紫外-可见分光光度法在有机化学、生物化学、药品分析、食品检验、医疗卫生、环境保护、生命科学等各个领域和科研生产工作中成为一种重要的检测手段。紫外紫外-可见分光光度法的基本原理可见分光光度法的基本原理 紫外-可见分光光度法(ultraviolet-visible spectrophotomet
11、ry,UV-VIS)它是利用物质的分子或离子对某一波长范围的光的吸收作用,对物质进行定性分析、定量分析及结构分析,所依据的光谱是分子或离子吸收入射光中特定波长的光而产生的吸收光谱。按所吸收光的波长区域不同,分为紫外分光光度法和可见分光光度法,合称为紫外-可见分光光度法。紫外-可见分光光度法的特点有以下五点:(1)与其它光谱分析方法相比,其仪器设备和操作都比较简单,费用少,分析速度快;(2)灵敏度高;(3)选择性好;(4)精密度和准确度较高;(5)用途广泛。分光光度计的类型分光光度计的类型 紫外-可见分光光度计可分为两大类,即单波长分光光度计和双波长分光光度计。单波长分光光度计又可分为单光束和双
12、光束两类。下面简要介绍几种类型仪器的光路原理。1 1、单光束紫外、单光束紫外-可见分光光度计可见分光光度计 经单色器分光后一束平行光,照射样品溶液(或参比溶液)进行吸光度的测定。此类仪器如国产的751型、752型、7530型等;国外的如英国的Unicam SP500型、美国的Beckmann DU-2型、日本岛津的QR-50型等。以7530型仪器为例,其光路原理如图2-9所示,光源为钨灯和氘灯。这种简易型分光光度计结构简单、操作方便、维修容易,但对光源发光强度的稳定要求较高。适合于紫外-可见区的常规定性和定量工作。2 2、双光束紫外、双光束紫外-可见分光光度计可见分光光度计 此类仪器国产的如7
13、10型、730型等;国外的如英国的Unicam SP700型、日本岛津的UV-200、UV-240型等。其光路原理如图2-10所示。从单色器射出的单色光,用一个旋转的扇面镜(又称斩光器)将它分成两束交替断续的单色光,分别通过参比池和样品池后,再用一同步的扇面镜将两束透过交替地投射于光电倍增管,使它产生一个交变的脉冲讯号,经过比较放大后,由显示器显示出透光率、吸光度、浓度,或进行波长扫描,记录吸收光谱。扇面镜以每秒几十至几百转的速度匀速旋转,使单色光能在很短时间内交替通过参比与样品池,可以减少或避免因光源发射光的强度不稳而引入的误差。测量中不需要移动吸收池,可在随意改变波长的同时自动记录所测量的
14、吸光度值,描绘吸收曲线。紫外紫外-可见分光光度法应用可见分光光度法应用 紫外-可见吸收光谱除主要可用于物质的定量分析外,还可以用于物质的定性分析、纯度鉴定、结构分析。一、纯度检查一、纯度检查(杂质检查和杂质限量检查)如果有机化合物在紫外可见光区没有明显的吸收峰,而杂质在紫外区有较强的吸收,则可利用紫外光谱检验化合物纯度。用紫外吸收光谱确定试样的纯度是比较方便的。如蛋白质与核酸的纯度分析中,可用A280/A260的比值,鉴定其纯度。二、有机化合物结构的测定二、有机化合物结构的测定 1、共轭体系和官能团的判断利用紫外光谱可以推导有机化合物的分子骨架中是否含有共轭结构体系,如C=C、C=O、N=N、
15、三键、苯环等。2、互变异构体和构型、构象的判断。可以通过经验规则计算出max 和max,与实际值比较进行判断三、氢健强度与摩尔质量的测定三、氢健强度与摩尔质量的测定四、定量分析(阴离子、阳离子等测定)四、定量分析(阴离子、阳离子等测定)五、配合物组成及其稳定常数的测定五、配合物组成及其稳定常数的测定 光谱仪器简介光谱仪器简介 用来测量吸收、发射或荧光的电磁辐射强度和波长关系的仪器叫做光谱仪或分光光度计。虽然各种方法所用仪器在构造方面不同,但其基本组成大致相同。这类仪器一般由五个部分组成:光源、单色器、样品池、检测器和输出记录。原子吸收光谱法的基本原理原子吸收光谱法的基本原理 原子吸收光谱法(a
16、tomic absorption spectrometry,AAS)又称原子吸收分光光度法,是基于蒸气中被测元素基态原子对共振辐射的吸收强度来测定样品中被测元素含量的一种方法。原子吸收光谱法是利用原子吸收现象进行分析,而原子发射光谱分析是基于原子的发射现象进行分析,两者是相互联系的两种相反的过程。两种分析所使用的仪器和测定方法有相似之处,又能不同之处。原子吸收光谱分析需要能产生为被测元素吸收的特征谱线的光源,能产生原子蒸气的原子化器等。原子吸收光谱法与紫外分光光度法在基本原理、仪器结构上有相似之处。在原理上两者都遵循朗伯-比尔吸收定律,但两者的吸收物质状态不同。紫外可见分光光度法是基于溶液分子
17、、离子对光的吸收,属于宽带的分子吸收光谱,因此使用连续光源。而原子吸收光谱法是基于基态原子对其特征谱线的吸收,属于窄带原子吸收光谱,因此使用锐线光源。测量时必须将样品原子化,因而仪器必须有原子化器。朗伯朗伯-比尔定律:比尔定律:朗伯-比尔定律(Lamberr-Berr)是吸收光谱法的基本定律。它表明在稀溶液中,物质对单色光的吸光度(A)与吸光物质溶液的浓度(C)和液层厚度(L)的乘积成正比。A=KCL原子吸收分光光度计的类型原子吸收分光光度计的类型 单光束仪器,只有一条光路。此类型仪器结构简单,操作方便,但会受到光源不稳定因素的影响产生基线漂移。双光束仪器,由光源发射出的光经调制后被切光器分成
18、两束,一束为测量光束,一束为参比光束(不经过火焰),两束光交替进入单色器和检测器。由于两束光来自于同一光源,光源的漂移通过参比光束的作用得到补偿,从而获得稳定的信号。原子吸收光谱分析法的优点原子吸收光谱分析法的优点 1 1、检出限低,灵敏度高。、检出限低,灵敏度高。火焰原子吸收法的检出限可达10-9g,石墨炉原子吸收法的检出限可达10-10-10-12g。2 2、测量精度好。、测量精度好。火焰原子吸收法测定中等和高含量元素的相对标准偏差可小于1%,测量精度已接近于经典化学方法。石墨炉原子吸收法的测量精度一般为3%-5%。3 3、选择性强,方法简便,分析速度快。、选择性强,方法简便,分析速度快。
19、由于采用锐线光源,样品不需经繁琐的分离,可在同一溶液中直接测定多种元素,测定一个元素只需数分钟,分析操作简便、迅速。4 4、应用范围广。、应用范围广。既能用于微量分析又能用于超微量分析,从测定的元素来说,可测定的元素可达70多种,不仅可以测定金属元素,也可用间接的方法测定非金属元素和有机化合物。原子吸收光谱定量分析法原子吸收光谱定量分析法 一、标准曲线法一、标准曲线法 标准曲线法是原子吸收分析中的常规分析方法。首先配制一组适当浓度的被测元素的标准溶液,一般为4-7个不同含量的标准。在实验条件下,测定吸光度A。以吸光度A为纵坐标,被测元素的浓度c为横坐标,绘制A-c标准曲线。在相同实验条件下测定
20、试样溶液,根据样式的吸光度在A-c标准曲线上查得试样溶液的浓度。二、二、标准加入法标准加入法 此方法又称增量法或直线外推法。这种方法可以消除基本效应的干扰。当很难配制与样品溶液相似的标准溶液或样品基体浓度很高,而且变化不定或样品中有固体物质对吸收的影响难以保持一定时,采用标准加入法可以克服这些困难。方法原理是:取相同体积的试样溶液两份,分别移入溶量瓶A、B中。另取一定量的标准溶液加入B中,之后将两份溶液稀释定容。在相同的条件下,测出A、B两份溶液的吸光度值。设A瓶中待测元素浓度为Cx,B瓶中的加入标准的浓度为Cs,A溶液吸光度为Ax,B溶液的吸光度为AO,则可得 在实测定时,通常取4份体积相同
21、的待测溶液,从第2份开始分别按比例加入不同的被测元素的标准溶液。然后稀释定容至一定体积。其浓度为C,Cx+Cs,Cx+2Cs,Cx+3Cs。分别测定吸光度为Ax,A1,A2,A3。以A对加入量作图,得到一条不通过坐标原点的直线,如图8-11所示。由图可见,直线在纵轴上的截距反应了试样中被测元素所引起的效应,将直线外延与横轴相交,则原点与交点的距离,即为所求试样中的被测元素的浓度。定量分析的几个概念定量分析的几个概念 1 1、灵敏度、灵敏度 在火焰原子吸收光谱分析中,把能产生1%吸收(或0.0044吸光度)时,被测元素在水溶液中的浓度(g/mL),称为特征(相对)灵敏度S或称特征浓度,可用(g/
22、mL)102表示。在无焰(石墨炉)原子吸收光谱分析中,把能产生1%吸收(或0.0044吸光度)时,被测元素在水溶液中的质量(g),称为绝对灵敏度,可用g/%表示。测定时被测试液的量适宜浓度应选在灵敏度在15-100倍的范围内。同一种元素在不同仪器上测定会得到不同灵敏度,因而灵敏度是仪器性能优劣的重要指标。2、检测限检测限 在灵敏度测定中未考虑仪器噪声的影响,因此不能衡量出仪器的最低检测限。检测限是指产生一个能够确证在试样中存在某元素的分析信号所需要的该元素的最小量。在原子吸收光谱分析中,将待测定元素给出3倍于标准偏差的读数时所对应的浓度或质量称作最小检测浓度Dc(相对检测限,单位为g/mL)或
23、最小检测质量Dm(绝对检测限,单位为g或g)式中,Ai为空白溶液单次测量的吸光度;A为空白溶液多次平行测定吸光度的平均值;n为测定次数(10)。检测限不但与仪器的灵敏度有关,还与仪器的稳定性(噪声)有关,它指明了测定的可靠程度。从使用角度看,提高仪器的灵敏度、降低噪声,是降低检测限,提高信噪比的有效手段。3、回收率回收率 当进行原子吸收光谱测定时,为评价测定方法的准确度和可靠性,通常需测定待测元素的回收率,其方法有以下两种:(1)用标准物质进行测定 将准确含有待测元素的标准物质,在与测定试样完全相同的实验条件下进行测定,实验测出的标准物质中待测元素的含量与标准物质的示值之比即为回收率。待测元素
24、的测定值 100%这是测定回收率的标准方法。待测元素的真实值回收率=(2)用标准加入法进行测定 在不能获得标准物质的情况下可使用标准加入法进行测定。在完全相同的实验条件下,先测定试样中待测元素的含量;然后再向另一份相同量的试样中,准确加入一定量的待测元素纯物质后,再次测定待测元素的含量。两次测定待测元素含量之差与待测元素加入量之比即为回收率。加入纯物质样品测定值-样品测定值 100%纯物质是指纯度在分析纯以上的化学试剂或基准试剂。从回收率的两种测定方法可知,当回收率的测定值接近100%时,表明所用的测定方法准确、可靠。纯物质的加入量回收率=4 4精密度精密度精密度是在限定条件下,应用同样的实验
25、方法,多次测量获得的结果之间的接近程度。一般用相对标准偏差(RSD)表示。1001(%)2xnxRSDi原子吸收光谱的应用原子吸收光谱的应用 原子吸收光谱分析法广泛应用于地质、冶金、机械、化工、农业、食品、轻工、生物医药、环境保护、材料科学等各个领域,是很有发展前途的近代仪器分析方法之一 n满足两个条件:满足两个条件:(1)辐射应具有能满足物质产生振动跃迁所需的能量;(2)辐射与物质间有相互偶合作用。对称分子对称分子:没有偶极矩,辐射不能引起共振,无红外活性。如:N2、O2、Cl2 等。非对称分子非对称分子:有偶极矩,红外活性。偶极子在交变电场中的作用示意图常见基团的红外吸收带常见基团的红外吸
展开阅读全文