卫生统计学第7版-课件第二章-定量的统计描述.ppt
- 【下载声明】
1. 本站全部试题类文档,若标题没写含答案,则无答案;标题注明含答案的文档,主观题也可能无答案。请谨慎下单,一旦售出,不予退换。
2. 本站全部PPT文档均不含视频和音频,PPT中出现的音频或视频标识(或文字)仅表示流程,实际无音频或视频文件。请谨慎下单,一旦售出,不予退换。
3. 本页资料《卫生统计学第7版-课件第二章-定量的统计描述.ppt》由用户(三亚风情)主动上传,其收益全归该用户。163文库仅提供信息存储空间,仅对该用户上传内容的表现方式做保护处理,对上传内容本身不做任何修改或编辑。 若此文所含内容侵犯了您的版权或隐私,请立即通知163文库(点击联系客服),我们立即给予删除!
4. 请根据预览情况,自愿下载本文。本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
5. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007及以上版本和PDF阅读器,压缩文件请下载最新的WinRAR软件解压。
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 卫生 统计学 课件 第二 定量 统计 描述
- 资源描述:
-
1、第二章第二章 定量资料定量资料的统计描述的统计描述2022-8-21 学习要求学习要求 了解:了解:应用应用SASSAS程序编制频率表的方法和程序编制频率表的方法和meansmeans、univariateunivariate过程对定量资料的描述。过程对定量资料的描述。熟悉:熟悉:定量资料频率表的编制方法和用途。定量资料频率表的编制方法和用途。掌握:掌握:算术均数、几何均数、中位数的计算方法和算术均数、几何均数、中位数的计算方法和使用条件;四分位间距、方差、标准差、变异系数的使用条件;四分位间距、方差、标准差、变异系数的计算方法和使用条件。计算方法和使用条件。2022-8-22 统计描述是用统
2、计图表、统计指标来描述资料的分布统计描述是用统计图表、统计指标来描述资料的分布规律及其数量特征的。规律及其数量特征的。第一节第一节 频率分布表与频率分布图频率分布表与频率分布图 医学研究资料变量值的个数较多时医学研究资料变量值的个数较多时,对个变量值出现的对个变量值出现的频数或频率列表即为频数分布表或频率分布表(频数或频率列表即为频数分布表或频率分布表(frequency distribution table),简称),简称频数表频数表或或频率表频率表。2022-8-23 一、离散型定量变量的频率分布一、离散型定量变量的频率分布 例例2-1 1998年某山区年某山区96名孕妇产前检查次数资料,
3、编制频率表。名孕妇产前检查次数资料,编制频率表。表表2-1 1998年某地年某地96名孕妇产前检查次数频率分布名孕妇产前检查次数频率分布0123455 4 71113262312 4.2 7.311.513.527.124.012.5 4112235618496 4.211.522.936.563.587.5 100.0合计合计961002022-8-24 图2-1 1998年某地年某地96名孕妇产前检查次数频率分布名孕妇产前检查次数频率分布 离散型定量变量的频率分布图可用直条图表达,以等离散型定量变量的频率分布图可用直条图表达,以等宽直条的高度表示各组频率的多少宽直条的高度表示各组频率的多少
4、2022-8-25二、连续型定量变量的频率分布二、连续型定量变量的频率分布 例例2-2 抽样调查某地抽样调查某地120名名1835岁健康男性居民血清铁含量岁健康男性居民血清铁含量(mmo/L),数据如下。试编制血清铁含量的频率分布表。数据如下。试编制血清铁含量的频率分布表。2022-8-26频率表的编制步骤如下:频率表的编制步骤如下:1.计算极差计算极差(range,R),亦称全距,即最大值与最小值之差。本例最亦称全距,即最大值与最小值之差。本例最大值为大值为29.64,最小值为,最小值为7.42,故,故R=29.64-7.42=22.22(mmo/L)。2.确定组段数与组距确定组段数与组距(
5、class interval)组段数一般取组段数一般取10组左右。组距组左右。组距用用i表示,组距表示,组距=极差极差/组段数,本例拟分组段数,本例拟分10组,组,i=22.22/10=2.22,一般取,一般取靠近的整数作为组距,本例取靠近的整数作为组距,本例取i2。3.确定各组段的上、下限确定各组段的上、下限 每个组段的起点称为组段的下限,终点称每个组段的起点称为组段的下限,终点称为组段的上限。第一组段要包括最小值,其下限取小于或等于最小值的为组段的上限。第一组段要包括最小值,其下限取小于或等于最小值的整数,本例取整数,本例取6最为第一组段的下限(也可取最为第一组段的下限(也可取7),最后一
6、个组段要包括),最后一个组段要包括最大值。注意各组段不能重合,每组段只写出下限,如最大值。注意各组段不能重合,每组段只写出下限,如6,8,最后最后一个组段可包括其上限值,如本例一个组段可包括其上限值,如本例2830。4.列表列表 清点各组的频数,计算频率、累积频率数和累计频率。清点各组的频数,计算频率、累积频率数和累计频率。2022-8-27组段(1)频数(2)频率(%)(3)累计频数(4)累计频率(%)(5)6810121416 18 20 22 24 26 2830 1 3 6 81220271812 8 4 1 0.83 2.50 5.00 6.6710.0016.6722.5015.0
7、010.00 6.67 3.33 0.83 1 4 10 18 30 50 77 95107115119120 0.83 3.33 8.33 15.00 25.00 41.67 64.17 79.17 89.17 95.83 99.17100.00合计120100.00表2-2 120名正常成年男子血清铁含量(mmo/L)频率分布2022-8-28图图2-2 120名健康成年男子血清铁含量(名健康成年男子血清铁含量(mol/L)分布分布2022-8-292-2 1202-2 120名健康成年男子血清铁含量名健康成年男子血清铁含量(mmommo/L)/L)分布分布2022-8-210三、频率分布
8、表(图)的用途三、频率分布表(图)的用途 1.1.揭示资料的分布类型揭示资料的分布类型 2022-8-211 正偏态(右偏态)负偏态(左偏态)2.2.观察资料的集中趋势和离散趋势观察资料的集中趋势和离散趋势 3.3.便于发现某些特大或特小的可疑值便于发现某些特大或特小的可疑值 4.4.便于进一步计算统计指标和作统计处理便于进一步计算统计指标和作统计处理2022-8-212第二节第二节 描述集中趋势的统计指标描述集中趋势的统计指标 医学定量资料中,描述集中趋势的统计指标主要有医学定量资料中,描述集中趋势的统计指标主要有算术均数、几何均数和中位数。算术均数、几何均数和中位数。一、算术均数一、算术均
9、数(arithmetic mean)(arithmetic mean)简称均数。均数适用于对称分布或近似对称分布的简称均数。均数适用于对称分布或近似对称分布的资料。习惯上以希腊字母资料。习惯上以希腊字母 表示总体均数表示总体均数(population(population mean)mean),以表示样本均数,以表示样本均数 (sample mean)(sample mean)。常用计算。常用计算方法有直接法和频率表法(亦称加权法)。方法有直接法和频率表法(亦称加权法)。X2022-8-2131.1.直接法直接法nXX 例例2-32-3 测得测得8至正常大白鼠血清总酸性磷酸酶(至正常大白鼠血清
10、总酸性磷酸酶(TACP)含量含量(U/L)为)为4.20,6.43,2.08,3.45,2.26,4.04,5.42,3.38。试。试求其算术均数。求其算术均数。本例本例9075.3826.31nXX(U/L)2022-8-214 2.频率表法频率表法 当变量值的个数较多时,在编制频率表当变量值的个数较多时,在编制频率表的基础上,应用加权法计算均数的近似值。的基础上,应用加权法计算均数的近似值。nfXffXX00 公式中,公式中,f 为各组段的频数,为各组段的频数,X0为各组段的组中值,为各组段的组中值,X0=(组段上限(组段上限+组段下限)组段下限)/2。例例2-4 57.181202228
11、0ffXX(mmo/L)如用直接法计算如用直接法计算,=18.61(mmo/L)X2022-8-215 表表2-3 2-3 频数表法计算均数频数表法计算均数组段组段(1)组中值组中值(X0)(2)频数频数(f)(3)fX0(4)=(2)(3)6 8 10 12 14 16 18 20 22 24 26 28 30 7 911131517192123252729 1 3 6 81220271812 8 4 1 7 27 66104180340513378276200108 29合计合计 120 22282022-8-216二、几何均数(geometric mean,)几何均数使用于原始变量不呈对
12、称分布几何均数使用于原始变量不呈对称分布,但对变量经对数但对变量经对数转换后呈对称分布的资料,又称对数正态分布资料。常见于转换后呈对称分布的资料,又称对数正态分布资料。常见于正偏态分布资料,如抗体滴度,某些传染病的潜伏期,细菌正偏态分布资料,如抗体滴度,某些传染病的潜伏期,细菌计数等。计算公式亦可用直接法和频数表法。计数等。计算公式亦可用直接法和频数表法。1.1.直接法直接法 对数的形式为对数的形式为 nnXXXXG321nXnXXXGnlglglglglglg12112022-8-217 例例2-5 7名慢性迁延型肝炎患者的名慢性迁延型肝炎患者的HBsAg滴度资料为滴度资料为:1:16,1:
13、32,1:32,1:64,1:64,1:128,1:512。试计算其几何均数。试计算其几何均数。本例先求平均滴度的倒数本例先求平均滴度的倒数6451212864643232167G648062.1lg7512lg128lg64lg64lg32lg32lg16lglg11G7 7名慢性迁延型肝炎患者的名慢性迁延型肝炎患者的HBsAgHBsAg滴度几何均数为滴度几何均数为1:641:64。2022-8-218 2.2.频率表法:频率表法:当资料中相同变量值的个数当资料中相同变量值的个数f(即频数)(即频数)较多时,可通过频率表法计算几何均数,公式为较多时,可通过频率表法计算几何均数,公式为fXfG
14、lglg1 表表2-4 52例慢性肝炎患者的例慢性肝炎患者的 HBsAg滴度资料滴度资料抗体滴度抗体滴度频数(频数(f)滴度倒数滴度倒数(X)logXflogX1:161:321:641:1281:2561:5122711131271632641282565121.204121.505151.806182.107212.408242.709272.4082410.5360519.8679827.3937328.8988818.96489合计合计52108.069772022-8-219本例本例f lgX=108.06977,f=52,代入公式得代入公式得 74705.1190783.2lg52
15、06977.108lg11G52例慢性肝炎患者的例慢性肝炎患者的 HBsAg滴度的几何均数为滴度的几何均数为1:119.75 计算几何均数应注意:计算几何均数应注意:变量值中不能有变量值中不能有0 0;不能同时有;不能同时有正值和负值;若全是负值,计算时可先把负号去掉,得出正值和负值;若全是负值,计算时可先把负号去掉,得出结果后再加上负号。结果后再加上负号。2022-8-220滴度倒数滴度倒数XlgX频数频数 f20.3010440.6021780.903115161.204120321.505116641.806271282.107232022-8-2212022-8-2222022-8-2
16、23三、中位数及百分位数三、中位数及百分位数 1.1.中位数(中位数(median,median,M M)将一组变量值从小到大按顺序排列,位次居中的变量值将一组变量值从小到大按顺序排列,位次居中的变量值称为中位数。在全部变量值中,大于和小于中位数的变量值称为中位数。在全部变量值中,大于和小于中位数的变量值的个数相等。的个数相等。用中位数表示平均水平主要适用于:变量值中出现个用中位数表示平均水平主要适用于:变量值中出现个别特小或特大的数值别特小或特大的数值;资料的分布呈明显偏态,即大部分资料的分布呈明显偏态,即大部分的变量值偏向一侧的变量值偏向一侧;变量值分布一端或两端无确定数值,变量值分布一端
17、或两端无确定数值,只有小于或大于某个数值只有小于或大于某个数值;资料的分布不清。资料的分布不清。2022-8-224 (1 1)直接法)直接法 当例数较少时,先将变量值由小到大当例数较少时,先将变量值由小到大顺序排列,再按以下公式计算。顺序排列,再按以下公式计算。n为奇数时为奇数时)21(nXMn为偶数时为偶数时 2/)12()2(nnXXM式中式中X的下标为变量值的位置。的下标为变量值的位置。2022-8-225 例例2-7 某药厂观察某药厂观察9只小鼠口服高山红景天醇提物后在只小鼠口服高山红景天醇提物后在乏氧条件下的生存时间(乏氧条件下的生存时间(min)如下:如下:49.1,60.8,6
18、3.3,63.6,63.6,65.6,65.8,68.9,69.0。试求其中位数。试求其中位数。本例本例n=9,为奇数,为奇数6.635219XXM如果如果n=10例,生存时间为例,生存时间为69.6,则中位数为,则中位数为6.642/)6.656.63(2/)(2/)(651210210XXXXM2022-8-226 (2 2)频率表法)频率表法 当例数较多时,先将变量值从小到大编当例数较多时,先将变量值从小到大编制频率表,并分别计算累计频数和累计频率(见表制频率表,并分别计算累计频数和累计频率(见表2 2-5 5)。先)。先从累计频率找出从累计频率找出M M所在的组段,然后按下式计算。所在
展开阅读全文