微分中值定理汇总课件.ppt
- 【下载声明】
1. 本站全部试题类文档,若标题没写含答案,则无答案;标题注明含答案的文档,主观题也可能无答案。请谨慎下单,一旦售出,不予退换。
2. 本站全部PPT文档均不含视频和音频,PPT中出现的音频或视频标识(或文字)仅表示流程,实际无音频或视频文件。请谨慎下单,一旦售出,不予退换。
3. 本页资料《微分中值定理汇总课件.ppt》由用户(三亚风情)主动上传,其收益全归该用户。163文库仅提供信息存储空间,仅对该用户上传内容的表现方式做保护处理,对上传内容本身不做任何修改或编辑。 若此文所含内容侵犯了您的版权或隐私,请立即通知163文库(点击联系客服),我们立即给予删除!
4. 请根据预览情况,自愿下载本文。本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
5. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007及以上版本和PDF阅读器,压缩文件请下载最新的WinRAR软件解压。
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 微分 中值 定理 汇总 课件
- 资源描述:
-
1、微分中值定理微分中值定理一、引理一、引理二、罗尔定理二、罗尔定理三、拉格朗日中值定理三、拉格朗日中值定理四、柯西中值定理四、柯西中值定理五、泰勒公式五、泰勒公式一、引理引理 设f(x)在 处可导,且在 的某邻域内恒有 则有 .0 x0 x),()()()(00 xfxfxfxf或0)(0 xf二、罗尔定理定理4.1 设函数f(x)满足(1)在闭区间a,b上连续,.0)(),(fba,使则至少存在一点(2)在开区间(a,b)内可导,(3)f(a)=f(b),注意:罗尔定理的条件有三个,如果缺少其中任何一个条件,定理将不成立.罗尔定理几何意义:若曲线弧在a,b上为连续弧段,在(a,b)内曲线弧上每
2、点都有不平行于y轴的切线,且曲线弧段在两个端点处的纵坐标相同,那么曲线弧段上至少有一点,过该点的切线必定平行于x轴.例如f(x)=|x|在1,1上连续,且f(1)=f(1)=1,但是|x|在(1,1)内有不可导的点,本例不存在 使 .),1,1(0)(f又如f(x)=x在0,1上连续,在(0,1)内可导,但是f(0)=0,f(1)=1,本例不存在 ,使 .)1,0(0)(f再如 f(x)在(0,1)内可导,f(0)=0=f(1),但是f(x)在0,1上不连续,本例不存在,1 ,0,10 ,)(xxxxf.0)(f使),1,0(还需指出,罗尔定理的条件是充分条件,不是必要条件.也就是说,定理的结
3、论成立,函数未必满足定理中的三个条件.即定理的逆命题不成立.例如 在0,3上不满足罗尔定理的条件 但是存在 ,使 .)3,0(12)1()(xxf),3()0(ff0)1(f三、拉格朗日中值定理定理4.2 设函数f(x)满足(1)在闭区间a,b上连续;(2)在开区间(a,b)内可导;则至少存在一点 .)()()(),(abafbffba,使 分析 与罗尔定理相比,拉格朗日中值定理中缺少条件是f(a)=f(b).如果能由f(x)构造一个新函数 使 在a,b上满足罗尔定理条件,且由 能导出 则问题可解决.)(x),(x0)(,)()()(abafbff拉格朗日中值定理的几何意义:如果在a,b上的连
4、续曲线,除端点外处处有不垂直于x轴的切线,那么在曲线弧上至少有一点 使曲线在该点处的切线平行于过曲线弧两端点的弦线.),(,(f.)()()()(axabafbfafy弦线的方程为作辅助函数)()()()()()(axabafbfafxfx即可.的几何意义为:曲线的纵坐标与曲线弧两端点连线对应的纵坐标之差.)(x证 令).()()()()()(axabafbfafxfx由于f(x)在a,b上连续,因此 在a,b上连续.)(x)(x由于f(x)在(a,b)内可导,因此 在(a,b)内可导.又由于),(0)(ba因此 在a,b上满足罗尔定理条件,所以至少存在一点 ,使 ,即)(x),(ba0)(0
5、,)()()(abafbff从而有 ,或表示为)()()(abafbff上述结论对ba也成立.).)()()(abfafbf 如果f(x)在(a,b)内可导,则在以 为端点的区间上f(x)也满足拉格朗日中值定理,即),(),(00baxxbaxxxx00与 因此又称拉格朗日中值定理为有限增量定理.,)()()(00 xfxfxxf其中 为之间的点.也可以记为xxx00与为10 ,)()()(000 xxxfxfxxf或,10 ,)(0 xxxfy推论1 若 在(a,b)内恒等于零,则f(x)在(a,b)内必为某常数.)(xf 事实上,对于(a,b)内的任意两点 ,由拉格朗日中值定理可得21,x
6、x,0)()()(1212xxfxfxf由拉格朗日中值定理可以得出积分学中有用的推论:位于x1,x2之间,故有f(x1)=f(x2).由x1,x2的任意性可知f(x)在(a,b)内恒为某常数.推论2 若在(a,b)内恒有 ,则有)()(xgxf其中C为某常数.由推论1可知f(x)g(x)=C,即f(x)=g(x)+C.f(x)=g(x)+C,事实上,由已知条件及导数运算性质可得.0)()()()(xgxfxgxf例1 选择题.选出符合题意的选项.下列函数在给定的区间上满足罗尔定理条件的有().0,2 ,1)(.Axxxf.4,2 ,)4()(.B2xxxf.2,23 ,sin)(.Cxxxf.
7、1,1|,|)(.Dxxxf注意罗尔定理的条件有三个:(1)函数y=f(x)在a,b上连续.(2)f(x)在(a,b)内可导.(3)f(a)=f(b).分析不难发现 ,在2,0上不满足连续的条件,因此应排除A.xxf1)(对于 ,在2,4上连续,在(2,4)内可导;f(2)=36,f(4)=0,因此应排除B.2)4()(xxf)4()2(ff.C.上2,23sin).2(1)23(应选尔定理满足罗在因此xff,)2,23(,2,23sin)(可导内在上连续,在对于xxf对于f(x)=|x|,在1,1上连续,在(1,1)内不可导,因此应排除.综合之,本例应单选.例2 设函数y=f(x)在a,b上
展开阅读全文