2020届高考数学(理)一轮复习讲义 4.4 函数y=Asin(ωx+φ)的图象及应用.docx
- 【下载声明】
1. 本站全部试题类文档,若标题没写含答案,则无答案;标题注明含答案的文档,主观题也可能无答案。请谨慎下单,一旦售出,不予退换。
2. 本站全部PPT文档均不含视频和音频,PPT中出现的音频或视频标识(或文字)仅表示流程,实际无音频或视频文件。请谨慎下单,一旦售出,不予退换。
3. 本页资料《2020届高考数学(理)一轮复习讲义 4.4 函数y=Asin(ωx+φ)的图象及应用.docx》由用户(和和062)主动上传,其收益全归该用户。163文库仅提供信息存储空间,仅对该用户上传内容的表现方式做保护处理,对上传内容本身不做任何修改或编辑。 若此文所含内容侵犯了您的版权或隐私,请立即通知163文库(点击联系客服),我们立即给予删除!
4. 请根据预览情况,自愿下载本文。本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
5. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007及以上版本和PDF阅读器,压缩文件请下载最新的WinRAR软件解压。
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 2020届高考数学(理)一轮复习讲义 4.4 函数yAsin(x)的图象及应用 高考 数学 一轮 复习 温习 讲义 函数 asin 图象 图像 应用 利用 运用 下载 _一轮复习_高考专区_数学_高中
- 资源描述:
-
1、公众号码:王校长资源站4.4函数yAsin(x)的图象及应用最新考纲考情考向分析1.了解函数yAsin(x)的物理意义;能画出yAsin(x)的图象2.了解参数A,对函数图象变化的影响3.会用三角函数解决一些简单实际问题,体会三角函数是描述周期变化现象的重要函数模型.以考查函数yAsin(x)的图象的五点法画图、图象之间的平移伸缩变换、由图象求函数解析式以及利用正弦型函数解决实际问题为主,常与三角函数的性质、三角恒等变换结合起来进行综合考查,加强数形结合思想的应用意识题型为选择题和填空题,中档难度.1yAsin(x)的有关概念yAsin(x)(A0,0),xR振幅周期频率相位初相ATfx2.用
2、五点法画yAsin(x)(A0,0,xR)一个周期内的简图时,要找五个特征点如下表所示:xx02yAsin(x)0A0A03.函数ysin x的图象经变换得到yAsin(x)(A0,0)的图象的两种途径概念方法微思考1怎样从ysin x的图象变换得到ysin(x)(0,0)的图象?提示向左平移个单位长度2函数ysin(x)图象的对称轴是什么?提示x(kZ)题组一思考辨析1判断下列结论是否正确(请在括号中打“”或“”)(1)ysin的图象是由ysin的图象向右平移个单位长度得到的()(2)将函数ysin x的图象向右平移(0)个单位长度,得到函数ysin(x)的图象()(3)函数yAcos(x)
3、的最小正周期为T,那么函数图象的两个相邻对称中心之间的距离为.()(4)函数ysin x的图象上各点纵坐标不变,横坐标缩短为原来的,所得图象对应的函数解析式为ysin x.()题组二教材改编2为了得到函数y2sin的图象,可以将函数y2sin 2x的图象向_平移_个单位长度答案右3y2sin的振幅、频率和初相分别为_答案2,4如图,某地一天从614时的温度变化曲线近似满足函数yAsin(x)b,则这段曲线的函数解析式为_答案y10sin20,x6,14解析从题图中可以看出,从614时的是函数yAsin(x)b的半个周期,所以A(3010)10,b(3010)20,又146,所以.又1022k,
4、kZ,取,所以y10sin20,x6,14题组三易错自纠5要得到函数ysin的图象,只需将函数ysin 4x的图象()A向左平移个单位长度 B向右平移个单位长度C向左平移个单位长度 D向右平移个单位长度答案A解析ysinsin,要得到ysin的图象,只需将函数ysin 4x的图象向左平移个单位长度6将函数y2sin的图象向右平移个周期后,所得图象对应的函数为_答案y2sin解析函数y2sin的周期为,将函数y2sin的图象向右平移个周期,即个单位长度,所得函数为y2sin2sin.7(2018乌海模拟)ycos(x1)图象上相邻的最高点和最低点之间的距离是_答案解析相邻最高点与最低点的纵坐标之
5、差为2,横坐标之差恰为半个周期,故它们之间的距离为.8(2018沈阳质检)若函数f(x)Asin(x)(A0,0,0)的部分图象如图所示,则f的值为_答案解析由题干图象可知A2,T,T,2,当x时,函数f(x)取得最大值,22k(kZ),2k(kZ),又0,f(x)2sin,则f2sin2cos .题型一函数yAsin(x)的图象及变换例1 (2018丹东模拟)已知函数f(x)Asin(x)的最小正周期是,且当x时,f(x)取得最大值2.(1)求f(x)的解析式;(2)作出f(x)在0,上的图象(要列表)解(1)因为函数f(x)的最小正周期是,所以2.又因为当x时,f(x)取得最大值2.所以A
6、2,同时22k,kZ,2k,kZ,因为0)个单位长度后得到函数yg(x)的图象,且yg(x)是偶函数,求m的最小值解由已知得yg(x)f(xm)2sin2sin是偶函数,所以2m(2k1),kZ,m,kZ,又因为m0,所以m的最小值为.思维升华 (1)yAsin(x)的图象可用“五点法”作简图得到,可通过变量代换zx计算五点坐标(2)由函数ysin x的图象通过变换得到yAsin(x)的图象有两条途径:“先平移后伸缩”与“先伸缩后平移”跟踪训练1(1)(2018本溪调研)若把函数ysin的图象向左平移个单位长度,所得到的图象与函数ycos x的图象重合,则的一个可能取值是()A2 B. C.
7、D.答案A解析ysin和函数ycos x的图象重合,可得2k,kZ,则6k2,kZ.2是的一个可能值(2)(2018包头质检)已知函数f(x)sin(00)个单位长度,则m的最小值为()A1 B. C. D.答案A解析由题意得sin0,即k(kZ),则2k(kZ),结合02,得,所以f(x)sincoscos,所以只需将函数g(x)cos x的图象向右至少平移1个单位长度,即可得到函数yf(x)的图象,故选A.题型二由图象确定yAsin(x)的解析式例2 (1)若函数yAsin(x)的部分图象如图所示,则y_.答案2sin解析由题图可知,A2,T2,所以2,由五点作图法可知2,所以,所以函数的
8、解析式为y2sin.(2)已知函数f(x)sin(x) 的部分图象如图所示,则yf取得最小值时x的集合为_答案解析根据题干所给图象,周期T4,故,2,因此f(x)sin(2x),另外图象经过点,代入有22k(kZ),再由|0)个单位长度后,得到函数g(x)的图象关于点对称,则m的值可能为()A. B. C. D.答案D解析依题意得解得,故2,则f(x)sin(2x).又fsin,故2k(kZ),即2k(kZ)因为|,故,所以f(x)sin.将函数f(x)的图象向左平移m个单位长度后得到g(x)sin的图象,又函数g(x)的图象关于点对称,即h(x)sin的图象关于点对称,故sin0,即2mk(
展开阅读全文