书签 分享 收藏 举报 版权申诉 / 16
上传文档赚钱

类型2020届高考数学(理)一轮复习讲义 高考专题突破5 高考中的圆锥曲线问题 第3课时 证明与探索性问题.docx

  • 上传人(卖家):和和062
  • 文档编号:342290
  • 上传时间:2020-03-06
  • 格式:DOCX
  • 页数:16
  • 大小:153.69KB
  • 【下载声明】
    1. 本站全部试题类文档,若标题没写含答案,则无答案;标题注明含答案的文档,主观题也可能无答案。请谨慎下单,一旦售出,不予退换。
    2. 本站全部PPT文档均不含视频和音频,PPT中出现的音频或视频标识(或文字)仅表示流程,实际无音频或视频文件。请谨慎下单,一旦售出,不予退换。
    3. 本页资料《2020届高考数学(理)一轮复习讲义 高考专题突破5 高考中的圆锥曲线问题 第3课时 证明与探索性问题.docx》由用户(和和062)主动上传,其收益全归该用户。163文库仅提供信息存储空间,仅对该用户上传内容的表现方式做保护处理,对上传内容本身不做任何修改或编辑。 若此文所含内容侵犯了您的版权或隐私,请立即通知163文库(点击联系客服),我们立即给予删除!
    4. 请根据预览情况,自愿下载本文。本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
    5. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007及以上版本和PDF阅读器,压缩文件请下载最新的WinRAR软件解压。
    配套讲稿:

    如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。

    特殊限制:

    部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。

    关 键  词:
    2020届高考数学(理)一轮复习讲义 高考专题突破5 高考中的圆锥曲线问题 第3课时证明与探索性问题 高考 数学 一轮 复习 温习 讲义 专题 突破 中的 圆锥曲线 问题 课时 证明 探索 下载 _二轮专题_高考专区_数学_高中
    资源描述:

    1、公众号码:王校长资源站第3课时证明与探索性问题题型一证明问题例1 (2017全国)设O为坐标原点,动点M在椭圆C:y21上,过M作x轴的垂线,垂足为N,点P满足.(1)求点P的轨迹方程;(2)设点Q在直线x3上,且1.证明:过点P且垂直于OQ的直线l过C的左焦点F.(1)解设P(x,y),M(x0,y0),则N(x0,0),(xx0,y),(0,y0)由 得x0x,y0y.因为M(x0,y0)在C上,所以1.因此点P的轨迹方程为x2y22.(2)证明由题意知F(1,0)设Q(3,t),P(m,n),则(3,t),(1m,n),33mtn,(m,n),(3m,tn)由1,得3mm2tnn21.又

    2、由(1)知m2n22,故33mtn0.所以0,即.又过点P存在唯一直线垂直于OQ,所以过点P且垂直于OQ的直线l过C的左焦点F.思维升华 圆锥曲线中的证明问题多涉及证明定值、点在定直线上等,有时也涉及一些否定性命题,证明方法一般是采用直接法或反证法跟踪训练1 已知椭圆T:1(ab0)的一个顶点A(0,1),离心率e,圆C:x2y24,从圆C上任意一点P向椭圆T引两条切线PM,PN.(1)求椭圆T的方程;(2)求证:PMPN.(1)解由题意可知b1,即2a23c2,又a2b2c2,联立解得a23,b21.椭圆方程为y21.(2)证明方法一当P点横坐标为时,纵坐标为1,PM斜率不存在,PN斜率为0

    3、,PMPN.当P点横坐标不为时,设P(x0,y0),则xy4,设kPMk,PM的方程为yy0k(xx0),联立方程组消去y得(13k2)x26k(y0kx0)x3k2x6kx0y03y30,依题意36k2(y0kx0)24(13k2)(3k2x6kx0y03y3)0,化简得(3x)k22x0y0k1y0,又kPM,kPN为方程的两根,所以kPMkPN1.所以PMPN.综上知PMPN.方法二当P点横坐标为时,纵坐标为1,PM斜率不存在,PN斜率为0,PMPN.当P点横坐标不为时,设P(2cos ,2sin ),切线方程为y2sin k(x2cos ),联立得(13k2)x212k(sin kco

    4、s )x12(sin kcos )230,令0,即144k2(sin kcos )24(13k2)12(sin kcos )230,化简得(34cos2)k24sin 2k14sin20,kPMkPN1.所以PMPN.综上知PMPN.题型二探索性问题例2 在平面直角坐标系xOy中,曲线C:y与直线l:ykxa(a0)交于M,N两点,(1)当k0时,分别求C在点M和N处的切线方程;(2)y轴上是否存在点P,使得当k变动时,总有OPMOPN?说明理由解(1)由题设可得M(2,a),N(2,a),或M(2,a),N(2,a)又y,故y在x2处的导数值为,C在点(2,a)处的切线方程为ya(x2),即

    5、xya0.y在x2处的导数值为,C在点(2,a)处的切线方程为ya(x2),即xya0.故所求切线方程为xya0和xya0.(2)存在符合题意的点,证明如下:设P(0,b)为符合题意的点,M(x1,y1),N(x2,y2),直线PM,PN的斜率分别为k1,k2.将ykxa代入C的方程得x24kx4a0.故x1x24k,x1x24a.从而k1k2.当ba时,有k1k20,则直线PM的倾斜角与直线PN的倾斜角互补,故OPMOPN,所以点P(0,a)符合题意思维升华 解决探索性问题的注意事项探索性问题,先假设存在,推证满足条件的结论,若结论正确则存在,若结论不正确则不存在(1)当条件和结论不唯一时要

    6、分类讨论;(2)当给出结论而要推导出存在的条件时,先假设成立,再推出条件;(3)当条件和结论都不知,按常规方法解题很难时,要开放思维,采取另外合适的方法跟踪训练2 (2018鞍山模拟)已知椭圆E:1(ab0)过点Q,且离心率e,直线l与E相交于M,N两点,l与x轴、y轴分别相交于C,D两点,O为坐标原点(1)求椭圆E的方程;(2)判断是否存在直线l,满足2,2?若存在,求出直线l的方程;若不存在,请说明理由解(1)由题意得解得所以椭圆E的方程为y21.(2)存在直线l,满足2,2.理由如下:方法一由题意,直线l的斜率存在,设直线l的方程为ykxm(km0),M(x1,y1),N(x2,y2),

    7、则C,D(0,m)由方程组得(12k2)x24kmx2m220,所以16k28m280.(*)由根与系数的关系,得x1x2,x1x2.因为2,2,所以,所以C,D是线段MN的两个三等分点,得线段MN的中点与线段CD的中点重合所以x1x20,解得k.由C,D是线段MN的两个三等分点,得|MN|3|CD|.所以|x1x2|3,即|x1x2|3,解得m.验证知(*)成立所以存在直线l,满足2,2,此时直线l的方程为yx或yx.方法二设M(x1,y1),N(x2,y2),C(m,0),D(0,n),由2,2,得解得M(2m,n),N(m,2n)又M,N两点在椭圆上,所以即解得故所求直线l的方程为5x1

    8、0y20或5x10y20或5x10y20或5x10y20.1(2018聊城模拟)已知椭圆C:1(ab0)的离心率为,F1,F2分别为椭圆的左、右焦点,点P为椭圆上一点,F1PF2面积的最大值为.(1)求椭圆C的方程;(2)过点A(4,0)作关于x轴对称的两条不同直线l1,l2分别交椭圆于M(x1,y1)与N(x2,y2),且x1x2,证明直线MN过定点,并求AMN的面积S的取值范围解(1)设a2b2c2,则,设P(x,y),则c|y|,|y|b,bc.解得椭圆C的方程为y21.(2)设MN方程为xnym(n0),联立得(n24)y22nmym240,由题意知,16(n2m24)0,y1y2,y

    9、1y2,关于x轴对称的两条不同直线l1,l2的斜率之和为0,即0,即0,得2ny1y2m(y1y2)4(y1y2)0,即0.解得m1.直线MN方程为xny1,直线MN过定点B(1,0)又|y1y2| 44,令t,t,|y1y2|4(0,),又S|AB|y1y2|y1y2|.2(2018宿州检测)已知椭圆C的中心为坐标原点,焦点在x轴上,离心率e,以椭圆C的长轴和短轴为对角线的四边形的周长为4.(1)求椭圆C的标准方程;(2)若经过点P(1,0)的直线l交椭圆C于A,B两点,是否存在直线l0:xx0(x02),使得A,B到直线l0的距离dA,dB满足恒成立,若存在,求出x0的值;若不存在,请说明

    10、理由解(1)设椭圆C的标准方程为1(ab0),ca,又44,a2b25,由b2a2c2a2,解得a2,b1,c.椭圆C的标准方程为y21.(2)若直线l的斜率不存在,则直线l0为任意直线都满足要求;当直线l的斜率存在时,设其方程为yk(x1),设A(x1,y1),B(x2,y2)(不妨令x11x2),则dAx0x1,dBx0x2,|PA|(x11),|PB|(1x2),解得x0.由得(14k2)x28k2x4k240,由题意知,0显然成立,x1x2,x1x2,x04.综上可知存在直线l0:x4,使得A,B到直线l0的距离dA,dB满足恒成立3(2018三明质检)已知顶点是坐标原点的抛物线的焦点

    11、F在y轴正半轴上,圆心在直线yx上的圆E与x轴相切,且E,F关于点M(1,0)对称(1)求E和的标准方程;(2)过点M的直线l与E交于A,B,与交于C,D,求证:|CD|AB|.(1)解设的标准方程为x22py(p0),则F.已知E在直线yx上,故可设E(2a,a)因为E,F关于M(1,0)对称,所以解得所以的标准方程为x24y.因为E与x轴相切,故半径r|a|1,所以E的标准方程为(x2)2(y1)21.(2)证明由题意知,直线l的斜率存在,设l的斜率为k,那么其方程为yk(x1)(k0),则E(2,1)到l的距离d,因为l与E交于A,B两点,所以d2r2,即0,所以|AB|22.由消去y并

    12、整理得x24kx4k0.16k216k0恒成立,设C(x1,y1),D(x2,y2),则x1x24k,x1x24k,那么|CD|x1x2|4.所以2.所以|CD|22|AB|2,即|CD|AB|.4(2018锦州模拟)已知椭圆1(ab0)的长轴与短轴之和为6,椭圆上任一点到两焦点F1,F2的距离之和为4.(1)求椭圆的标准方程;(2)若直线AB:yxm与椭圆交于A,B两点,C,D在椭圆上,且C,D两点关于直线AB对称,问:是否存在实数m,使|AB|CD|,若存在,求出m的值;若不存在,请说明理由解(1)由题意,2a4,2a2b6,a2,b1.椭圆的标准方程为y21.(2)C,D关于直线AB对称

    13、,设直线CD的方程为yxt,联立消去y,得5x28tx4t240,64t245(4t24)0,解得t25,设C,D两点的坐标分别为(x1,y1),(x2,y2),则x1x2,x1x2,设CD的中点为M(x0,y0),M,又点M也在直线yxm上,则m,t,t25,m2.则|CD|x1x2|.同理|AB|.|AB|CD|,|AB|22|CD|2,2t2m25,m2b0)的离心率为,过右焦点F且斜率为1的直线交椭圆C于A,B两点,N为弦AB的中点,O为坐标原点(1)求直线ON的斜率kON;(2)求证:对于椭圆C上的任意一点M,都存在0,2),使得cos sin 成立(1)解设椭圆的焦距为2c,因为,

    14、所以,故有a23b2.从而椭圆C的方程可化为x23y23b2.知右焦点F的坐标为(b,0),据题意有AB所在的直线方程为yxb.由得4x26bx3b20.设A(x1,y1),B(x2,y2),弦AB的中点N(x0,y0),由及根与系数的关系得:x0,y0x0bb.所以kON,即为所求(2)证明显然与可作为平面向量的一组基底,由平面向量基本定理,对于这一平面内的向量,有且只有一对实数,使得等式成立设M(x,y),由(1)中各点的坐标有(x,y)(x1,y1)(x2,y2),故xx1x2,yy1y2.又因为点M在椭圆C上,所以有(x1x2)23(y1y2)23b2,整理可得2(x3y)2(x3y)

    15、2(x1x23y1y2)3b2.由有x1x2,x1x2.所以x1x23y1y2x1x23(x1b)(x2b)4x1x23b(x1x2)6b23b29b26b20.又点A,B在椭圆C上,故有x3y3b2,x3y3b2.将,代入可得,221.所以,对于椭圆上的每一个点M,总存在一对实数,使等式成立,且221.所以存在0,2),使得cos ,sin .也就是:对于椭圆C上任意一点M,总存在0,2),使得等式cos sin 成立6.如图,椭圆E:1(ab0)的离心率是,点P(0,1)在短轴CD上,且1.(1)求椭圆E的方程;(2)设O为坐标原点,过点P的动直线与椭圆交于A,B两点是否存在常数,使得为定值?若存在,求出的值;若不存在,请说明理由解(1)由已知,点C,D的坐标分别为(0,b),(0,b),又点P的坐标为(0,1),且1,于是解得a2,b,所以椭圆E的方程为1.(2)当直线AB的斜率存在时,设直线AB的方程为ykx1,A,B的坐标分别为(x1,y1),(x2,y2),联立得(4k21)x28kx40,其判别式(8k)216(4k21)0,所以x1x2,x1x2,从而,x1x2y1y2x1x2(y11)(y21)(1)(1k2)x1x2k(x1x2)12.所以当时,2,此时为定值当直线AB斜率不存在时,直线AB即为直线CD,此时,2.故存在常数,使得为定值.公众号码:王校长资源站

    展开阅读全文
    提示  163文库所有资源均是用户自行上传分享,仅供网友学习交流,未经上传用户书面授权,请勿作他用。
    关于本文
    本文标题:2020届高考数学(理)一轮复习讲义 高考专题突破5 高考中的圆锥曲线问题 第3课时 证明与探索性问题.docx
    链接地址:https://www.163wenku.com/p-342290.html
    和和062
         内容提供者      个人认证 实名认证

    Copyright@ 2017-2037 Www.163WenKu.Com  网站版权所有  |  资源地图   
    IPC备案号:蜀ICP备2021032737号  | 川公网安备 51099002000191号


    侵权投诉QQ:3464097650  资料上传QQ:3464097650
       


    【声明】本站为“文档C2C交易模式”,即用户上传的文档直接卖给(下载)用户,本站只是网络空间服务平台,本站所有原创文档下载所得归上传人所有,如您发现上传作品侵犯了您的版权,请立刻联系我们并提供证据,我们将在3个工作日内予以改正。

    163文库