全国各地中考数学试题压轴题解析汇编参考模板范本.doc
- 【下载声明】
1. 本站全部试题类文档,若标题没写含答案,则无答案;标题注明含答案的文档,主观题也可能无答案。请谨慎下单,一旦售出,不予退换。
2. 本站全部PPT文档均不含视频和音频,PPT中出现的音频或视频标识(或文字)仅表示流程,实际无音频或视频文件。请谨慎下单,一旦售出,不予退换。
3. 本页资料《全国各地中考数学试题压轴题解析汇编参考模板范本.doc》由用户(林田)主动上传,其收益全归该用户。163文库仅提供信息存储空间,仅对该用户上传内容的表现方式做保护处理,对上传内容本身不做任何修改或编辑。 若此文所含内容侵犯了您的版权或隐私,请立即通知163文库(点击联系客服),我们立即给予删除!
4. 请根据预览情况,自愿下载本文。本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
5. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007及以上版本和PDF阅读器,压缩文件请下载最新的WinRAR软件解压。
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 全国各地 中考 数学试题 压轴 题解 汇编 参考 模板 范本 下载 _模拟试题_中考复习_数学_初中
- 资源描述:
-
1、年全国各地中考数学试题压轴题解析汇编解答题(2)26.(年浙江杭州12分)方成同学看到一则材料,甲开汽车,乙骑自行车从M地出发沿一条公路匀速前往N地,设乙行驶的时间为t(h),甲乙两人之间的距离为y(km),y与t的函数关系如图1所示,方成思考后发现了图1的部分正确信息,乙先出发1h,甲出发0.5小时与乙相遇,请你帮助方成同学解决以下问题:(1)分别求出线段BC,CD所在直线的函数表达式;(2)当20y30时,求t的取值范围;(3)分别求出甲、乙行驶的路程S甲、S乙与时间t的函数表达式,并在图2所给的直角坐标系中分别画出它们的图象;(4)丙骑摩托车与乙同时出发,从N地沿同一条公路匀速前往M地,
2、若丙经过h与乙相遇,问丙出发后多少时间与甲相遇.【答案】解:(1)设线段BC所在直线的函数表达式为,解得.线段BC所在直线的函数表达式为.设线段CD所在直线的函数表达式为,解得.线段BC所在直线的函数表达式为.(2)线段OA所在直线的函数表达式为,点A的纵坐标为20.当时,即或,解得或.当时, t的取值范围为或.(3),.所画图形如答图:(4)当0时,丙距M地的路程与时间的函数关系式为.联立,解得与图象交点的横坐标为,丙出发后与甲相遇.【考点】一次函数的图象和性质;待定系数法的应用;直线上点的坐标与方程的关系;解方程组和不等式组;分类思想的应用.【分析】(1)应用待定系数法即可求得线段BC,C
3、D所在直线的函数表达式.(2)求出点A的纵坐标,确定适用的函数,解不等式组求解即可.(3)求函数表达式画图即可.(4)求出与时间的函数关系式,与联立求解.27. (年浙江嘉兴12分)某企业接到一批粽子生产任务,按要求在15天内完成,约定这批粽子的出厂价为每只6元. 为按时完成任务,该企业招收了新工人,设新工人李明第天生产的粽子数量为只,与满足如下关系式:.(1)李明第几天生产的粽子数量为420只?(2)如图,设第天每只粽子的成本是元,与之间的关系可用图中的函数图象来刻画. 若李明第天创造的利润为元,求与之间的函数表达式,并求出第几天的利润最大?最大值是多少元(利润=出厂价-成本)?【答案】解:
4、(1)设李明第天生产的粽子数量为420只,根据题意,得,解得.答:李明第10天生产的粽子数量为420只.(2)由图象可知,当时,;当时,设,把点(9,4.1),(15,4.7)代入止式,得,解得.时,当时,(元);时,是整数,当时,(元);时,当时,(元).综上所述,与之间的函数表达式为,第12天的利润最大,最大值是768元.【考点】一元一次方程、一次函数和二次函数的综合应用;分类思想的应用.【分析】(1)方程的应用解题关键是找出等量关系,列出方程求解. 本题设李明第天生产的粽子数量为420只,等量关系为:“第天生产的粽子数量等于420只”.(2)先求出与之间的关系式,分,三种情况求解即可.2
5、8. (年浙江嘉兴14分)类比等腰三角形的定义,我们定义:有一组邻边相等的凸四边形叫做“等邻边四边形”.(1)概念理解:如图1,在四边形ABCD中,添加一个条件,使得四边形ABCD是“等邻边四边形”,请写出你添加的一个条件;(2)问题探究:小红猜想:对角线互相平分的“等邻边四边形”是菱形,她的猜想正确吗?请说明理由;如图2,小红画了一个RtABC,其中ABC=90,AB=2,BC=1,并将RtABC沿B的平分线方向平移得到,连结. 小红要使平移后的四边形是“等邻边四边形”,应平移多少距离(即线段的长)?(3)应用拓展:如图3,“等邻边四边形”ABCD中,AB=AD,BAD+BCD=90,AC,
6、BD为对角线,.试探究BC,CD,BD的数量关系.【答案】解:(1)(答案不唯一).(2)正确.理由如下:四边形的对角线互相平分,这个四边形是平行四边形.四边形是“等邻边四边形”,这个四边形有一组邻边相等.这个四边形是菱形.ABC=90,AB=2,BC=1,.将RtABC平移得到,.i)如答图1,当时,;ii)如答图2,当时,;iii)如答图3,当时,延长交于点,则.平分,.设,则.在中,解得(不合题意,舍去).iv)如答图4,当时,同ii)方法,设,可得,即,解得(不合题意,舍去).综上所述,要使平移后的四边形是“等邻边四边形”,应平移2或或或的距离.(3)BC,CD,BD的数量关系为.如答
7、图5,将绕点A旋转到.,.【考点】新定义;面动平移问题;菱形的判定;全等三角形的判定和性质;相似三角形的判定和性质;等腰直角三角形的判定和性质;多边形内角和定理;勾股定理;分类思想和方程思想的应用.【分析】(1)根据定义,添加或或或即可(答案不唯一).(2)根据定义,分,四种情况讨论即可.(3)由,可将绕点A旋转到,构成全等三角形:,从而得到,进而证明得到,通过角的转换,证明,根据勾股定理即可得出.29. (年浙江湖州10分)问题背景:已知在ABC中,AB边上的动点D由A向B运动(与A,B不重合),点E与点D同时出发,由点C沿BC的延长线方向运动(E不与C重合),连结DE交AC于点F,点H是线
8、段AF上一点(1)初步尝试:如图1,若ABC是等边三角形,DHAC,且点D,E的运动速度相等,求证:HF=AH+CF小王同学发现可以由以下两种思路解决此问题:思路一:过点D作DGBC,交AC于点G,先证GH=AH,再证GF=CF,从而证得结论成立;思路二:过点E作EMAC,交AC的延长线于点M,先证CM=AH,再证HF=MF,从而证得结论成立.请你任选一种思路,完整地书写本小题的证明过程(如用两种方法作答,则以第一种方法评分)(2)类比探究:如图2,若在ABC中,ABC=90,ADH=BAC=30,且点D,E的运动速度之比是,求的值;(3)延伸拓展:如图3,若在ABC中,AB=AC,ADH=B
9、AC=36,记,且点D、E的运动速度相等,试用含m的代数式表示(直接写出结果,不必写解答过程).【答案】解:(1)证明:选择思路一:如题图1,过点D作DGBC,交AC于点G,ABC是等边三角形,.ADG是等边三角形. .DHAC,.DGBC,.,即.选择思路二:如题图1,过点E作EMAC,交AC的延长线于点M,ABC是等边三角形,.DHAC,EMAC,.,.又,.(2)如答图1,过点D作DGBC,交AC于点G,则.,.由题意可知,.DGBC,.,即.(3).【考点】开放型;双动点问题;等边三角形的判定和性质;全等三角形的判定和性质;相似三角形的判定和性质.【分析】(1)根据思路任选择一个进行证
10、明即可.(2)仿思路一,作辅助线:过点D作DGBC,交AC于点G,进行计算.(3)如答图2,过点D作DGBC,交AC于点G,由AB=AC,ADH=BAC=36可证:,由点D、E的运动速度相等,可得.从而可得.30. (年浙江湖州12分)已知在平面直角坐标系xOy中,O为坐标原点,线段AB的两个端点A(0,2),B(1,0)分别在y轴和x轴的正半轴上,点C为线段AB的中点,现将线段BA绕点B按顺时针方向旋转90得到线段BD,抛物线y=ax2+bx+c(a0)经过点D.(1)如图1,若该抛物线经过原点O,且.求点D的坐标及该抛物线的解析式;连结CD,问:在抛物线上是否存在点P,使得POB与BCD互
11、余?若存在,请求出所有满足条件的点P的坐标,若不存在,请说明理由;(2)如图2,若该抛物线y=ax2+bx+c(a0)经过点E(1,1),点Q在抛物线上,且满足QOB与BCD互余,若符合条件的Q点的个数是4个,请直接写出a的取值范围.【答案】解:(1)如答图,过点D作DF轴于点F,.又,.点D的坐标为根据题意得,解得抛物线的解析式点、的纵坐标都为,轴和互余若要使得和互余,则只要满足设点的坐标为,i)当点在轴上方时,如答图,过点作轴于点,则,即,解得(舍去)点的坐标为ii)当点在轴下方时,如答图,过点作轴于点,则,即,解得(舍去)点的坐标为综上所述,在抛物线上存在点P,使得POB与BCD互余,点
12、的坐标为或(2)a的取值范围为或【考点】二次函数综合题;线动旋转问题;全等三角形的判定和性质;曲线上点的坐标与方程的关系;锐角三角函数定义;余角的性质;方程和不等式的应用;分类思想和数形结合思想的应用【分析】(1)根据证明即可得到,从而得到点D的坐标;由已知和曲线上点的坐标与方程的关系即可求得抛物线的解析式得可以证明,使得和互余,只要满足即可,从而分点在轴上方和点在轴下方讨论即可(2)由题意可知,直线BD的解析式为,由该抛物线y=ax2+bx+c(a0)经过点E(1,1),可得,所以抛物线的解析式为若要使得和互余,则只要满足,据此分和两种情况讨论31. (年浙江金华10分)图1,图2为同一长方
13、体房间的示意图,图2为该长方体的表面展开图.(1)蜘蛛在顶点处苍蝇在顶点B处时,试在图1中画出蜘蛛为捉住苍蝇,沿墙面爬行的最近路线;苍蝇在顶点C处时,图2中画出了蜘蛛捉住苍蝇的两条路线,往天花板ABCD爬行的最近路线和往墙面爬行的最近路线,试通过计算判断哪条路线更近?(2)在图3中,半径为10dm的M与相切,圆心M到边的距离为15dm,蜘蛛P在线段AB上,苍蝇Q在M的圆周上,线段PQ为蜘蛛爬行路线。若PQ与M相切,试求PQ的长度的范围.【答案】解:(1)如答图1,连结,线段就是所求作的最近路线.EBAABFC两种爬行路线如答图2所示,由题意可得:在RtACC2中, AHC2= (dm);在Rt
14、ABC1中, AGC1=(dm),路线AGC1更近.(2)如答图,连接MQ,PQ为M的切线,点Q为切点,MQPQ.在RtPQM中,有PQ2=PM2QM2= PM2100,当MPAB时,MP最短,PQ取得最小值,如答图3,此时MP=30+20=50,PQ= (dm).当点P与点A重合时, MP最长,PQ取得最大值,如答图4,过点M作MNAB,垂足为N,由题意可得 PN=25,MN=50,在RtPMN中,.在RtPQM中,PQ= (dm).综上所述, 长度的取值范围是.【考点】长方体的表面展开图;双动点问题;线段、垂直线段最短的性质;直线与圆的位置关系;勾股定理.【分析】(1)根据两点之间线段最短
15、的性质作答.根据勾股定理,计算两种爬行路线的长,比较即可得到结论.(2)当MPAB时,MP最短,PQ取得最小值;当点P与点A重合时, MP最长,PQ取得最大值.求出这两种情况时的PQ长即可得出结论.32. (年浙江金华12分)如图,抛物线与轴交于点A,与轴交于点B,C两点(点C在轴正半轴上),ABC为等腰直角三角形,且面积为4. 现将抛物线沿BA方向平移,平移后的抛物线经过点C时,与轴的另一交点为E,其顶点为F,对称轴与轴的交点为H.(1)求,的值;(2)连结OF,试判断OEF是否为等腰三角形,并说明理由;(3)现将一足够大的三角板的直角顶点Q放在射线AF或射线HF上,一直角边始终过点E,另一
16、直角边与轴相交于点P,是否存在这样的点Q,使以点P,Q,E为顶点的三角形与POE全等?若存在,求出点Q的坐标;若不存在,请说明理由. 【答案】解:(1)ABC为等腰直角三角形,OA=BC.又ABC的面积=BCOA=4,即=4,OA=2. A ,B ,C .,解得.(2)OEF是等腰三角形. 理由如下:如答图1,A ,B ,直线AB的函数表达式为,又平移后的抛物线顶点F在射线BA上,设顶点F的坐标为(m,m+2).平移后的抛物线函数表达式为.抛物线过点C ,解得.平移后的抛物线函数表达式为,即.当y=0时,解得.E(10,0),OE=10.又F(6,8),OH=6,FH=8.,OE=OF,即OE
17、F为等腰三角形.(3)存在. 点Q的位置分两种情形:情形一:点Q在射线HF上,当点P在轴上方时,如答图2.PQEPOE, QE=OE=10.在RtQHE中,,Q.当点P在轴下方时,如答图3,有PQ=OE=10,过P点作于点K,则有PK=6.在RtPQK中,,,.,.又,. , 即,解得.Q.情形二:点Q在射线AF上,当PQ=OE=10时,如答图4,有QE=PO,四边形POEQ为矩形,Q的横坐标为10.当时, Q.当QE=OE=10时,如答图5.过Q作轴于点M,过E点作x轴的垂线交QM于点N,设Q的坐标为,.在中,有, 即,解得.当时,如答图5,Q.当时,如答图6, .综上所述,存在点Q或或或或
18、,使以P,Q,E三点为顶点的三角形与POE全等.【考点】二次函数综合题;线动平移和全等三角形存在性问题;等腰直角三角形的性质;待定系数法的应用;曲线上点的坐标与方程的关系;勾股定理;全等三角形的判定和性质;相似三角形的判定和性质;分类思想和方程思想的应用.【分析】(1)由ABC为等腰直角三角形求得点A、B、C的坐标,应用待定系数法即可求得,的值. (2)求得平移后的抛物线解析式,从而求得点E、F的坐标,应用勾股定理分别求出OE、OF、EF的长,从而得出结论.(3)分点Q在射线HF上和点Q在射线AF上两种情况讨论即可.33. (年浙江丽水10分)如图,在矩形ABCD中,E为CD的中点,F为BE上
19、的一点,连结CF并延长交AB于点M,MNCM交射线AD于点N.(1)当F为BE中点时,求证:AM=CE;(2)若,求的值;(3)若,当为何值时,MNBE?【答案】解:(1)证明:F为BE中点,BF=EF.ABCD,MBF=CEF,BMF=ECF.BMFECF(AAS).MB=CE.AB=CD,CE=DE,MB=AM. AM=CE.(2)设MB=,ABCD,BMFECF. .,.,.MNMC,A=ABC=90,AMNBCM. ,即.(3)设MB=,由(2)可得.当MNBE时,CMBE.可证MBCBCE. ,即.当时,MNBE.【考点】探究型问题;矩形的性质;全等三角形的判定和性质;相似三角形的判
20、定和性质. 【分析】(1)应用AAS证明BMFECF即可易得结论.(2)证明BMFECF和AMNBCM,应用相似三角形对应边成比例的性质即可得出结果.(3)应用(2)的一结结果,证明MBCBCE即可求得结果.34. (年浙江丽水12分)某乒乓球馆使用发球机进行辅助训练,出球口在桌面中线端点A处的正上方,假设每次发出的乒乓球的运动路线固定不变,且落在中线上,在乒乓球运行时,设乒乓球与端点A的水平距离为(米),与桌面的高度为(米),运行时间为(秒),经多次测试后,得到如下部分数据:(秒)00.160.20.40.60.640.8(米)00.40.511.51.62(米)0.250.3780.40.
展开阅读全文