2020届高考数学(理)一轮复习讲义 4.5 第2课时 简单的三角恒等变换.docx
- 【下载声明】
1. 本站全部试题类文档,若标题没写含答案,则无答案;标题注明含答案的文档,主观题也可能无答案。请谨慎下单,一旦售出,不予退换。
2. 本站全部PPT文档均不含视频和音频,PPT中出现的音频或视频标识(或文字)仅表示流程,实际无音频或视频文件。请谨慎下单,一旦售出,不予退换。
3. 本页资料《2020届高考数学(理)一轮复习讲义 4.5 第2课时 简单的三角恒等变换.docx》由用户(和和062)主动上传,其收益全归该用户。163文库仅提供信息存储空间,仅对该用户上传内容的表现方式做保护处理,对上传内容本身不做任何修改或编辑。 若此文所含内容侵犯了您的版权或隐私,请立即通知163文库(点击联系客服),我们立即给予删除!
4. 请根据预览情况,自愿下载本文。本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
5. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007及以上版本和PDF阅读器,压缩文件请下载最新的WinRAR软件解压。
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 2020届高考数学(理)一轮复习讲义 4.5 第2课时 简单的三角恒等变换 高考 数学 一轮 复习 温习 讲义 课时 简单 三角 恒等 变换 下载 _一轮复习_高考专区_数学_高中
- 资源描述:
-
1、公众号码:王校长资源站第2课时简单的三角恒等变换题型一三角函数式的化简1化简:_.答案2cos 解析原式2cos .2化简:_.答案cos 2x解析原式cos 2x.3化简:2cos()解原式.思维升华 (1)三角函数式的化简要遵循“三看”原则一看角,二看名,三看式子结构与特征(2)三角函数式的化简要注意观察条件中角之间的联系(和、差、倍、互余、互补等),寻找式子和三角函数公式之间的共同点题型二三角函数的求值命题点1给角求值与给值求值例1 (1)(2018阜新质检)2sin 50sin 10(1tan 10)_.答案解析原式sin 80cos 102sin 50cos 10sin 10cos(
2、6010)2sin(5010)2.(2)(2018赤峰模拟)已知cos,则sin_.答案解析由题意可得cos2,cossin 2,即sin 2.因为cos0,所以00.又(,2),.(2)已知,(0,),且tan(),tan ,则2的值为_答案解析tan tan()0,00,02,tan(2)1.tan 0,20,2.引申探究本例(1)中,若,为锐角,sin ,cos ,则_.答案解析,为锐角,cos ,sin ,cos()cos cos sin sin .又00,2sin 3cos ,又sin2cos21,cos ,sin ,.(2)已知sin ,sin(),均为锐角,则_.答案解析因为,均
3、为锐角,所以.又sin(),所以cos().又sin ,所以cos ,所以sin sin()sin cos()cos sin().所以.题型三三角恒等变换的应用例3 已知函数f(x)sin2xcos2x2sin xcos x(xR)(1)求f的值;(2)求f(x)的最小正周期及单调递增区间解(1)由sin ,cos ,得f2222.(2)由cos 2xcos2xsin2x与sin 2x2sin xcos x,得f(x)cos 2xsin 2x2sin.所以f(x)的最小正周期是.由正弦函数的性质,得2k2x2k,kZ,解得kxk,kZ.所以f(x)的单调递增区间为(kZ)思维升华 三角恒等变换
4、的应用策略(1)进行三角恒等变换要抓住:变角、变函数名称、变结构,尤其是角之间的关系;注意公式的逆用和变形使用(2)把形如yasin xbcos x化为ysin(x),可进一步研究函数的周期性、单调性、最值与对称性跟踪训练2 已知角的顶点在坐标原点,始边与x轴的非负半轴重合,终边经过点P(3,)(1)求sin 2tan 的值;(2)若函数f(x)cos(x)cos sin(x)sin ,求函数g(x)f2f2(x)在区间上的值域解(1)角的终边经过点P(3,),sin ,cos ,tan .sin 2tan 2sin cos tan .(2)f(x)cos(x)cos sin(x)sin co
5、s x,xR,g(x)cos2cos2xsin 2x1cos 2x2sin1,0x,2x.sin1,22sin11,故函数g(x)f2f2(x)在区间上的值域是2,1化归思想和整体代换思想在三角函数中的应用讨论形如yasin xbcos x型函数的性质,一律化成ysin(x)型的函数;研究yAsin(x)型函数的最值、单调性,可将x视为一个整体,换元后结合ysin x的图象解决例 已知函数f(x)4tan xsincos.(1)求f(x)的定义域与最小正周期;(2)讨论f(x)在区间上的单调性解(1)f(x)的定义域为.f(x)4tan xcos xcos4sin xcos4sin x2sin
展开阅读全文