2020届高考数学(理)一轮复习讲义 高考专题突破5 高考中的圆锥曲线问题 第2课时 定点与定值问题.docx
- 【下载声明】
1. 本站全部试题类文档,若标题没写含答案,则无答案;标题注明含答案的文档,主观题也可能无答案。请谨慎下单,一旦售出,不予退换。
2. 本站全部PPT文档均不含视频和音频,PPT中出现的音频或视频标识(或文字)仅表示流程,实际无音频或视频文件。请谨慎下单,一旦售出,不予退换。
3. 本页资料《2020届高考数学(理)一轮复习讲义 高考专题突破5 高考中的圆锥曲线问题 第2课时 定点与定值问题.docx》由用户(和和062)主动上传,其收益全归该用户。163文库仅提供信息存储空间,仅对该用户上传内容的表现方式做保护处理,对上传内容本身不做任何修改或编辑。 若此文所含内容侵犯了您的版权或隐私,请立即通知163文库(点击联系客服),我们立即给予删除!
4. 请根据预览情况,自愿下载本文。本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
5. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007及以上版本和PDF阅读器,压缩文件请下载最新的WinRAR软件解压。
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 2020届高考数学(理)一轮复习讲义 高考专题突破5 高考中的圆锥曲线问题 第2课时定点与定值问题 高考 数学 一轮 复习 温习 讲义 专题 突破 中的 圆锥曲线 问题 课时 定点 下载 _二轮专题_高考专区_数学_高中
- 资源描述:
-
1、公众号码:王校长资源站第2课时定点与定值问题题型一定点问题例1 (2017全国)已知椭圆C:1(ab0),四点P1(1,1),P2(0,1),P3,P4中恰有三点在椭圆C上(1)求C的方程;(2)设直线l不经过P2点且与C相交于A,B两点若直线P2A与直线P2B的斜率的和为1,证明:l过定点(1)解由于P3,P4两点关于y轴对称,故由题设知椭圆C经过P3,P4两点又由知,椭圆C不经过点P1,所以点P2在椭圆C上因此解得故椭圆C的方程为y21.(2)证明设直线P2A与直线P2B的斜率分别为k1,k2.如果l与x轴垂直,设l:xt,由题设知t0,且|t|0.设A(x1,y1),B(x2,y2),则
2、x1x2,x1x2.而k1k2.由题设知k1k21,故(2k1)x1x2(m1)(x1x2)0.即(2k1)(m1)0,解得k.当且仅当m1时,0,于是l:yxm,即y1(x2),所以l过定点(2,1)思维升华 圆锥曲线中定点问题的两种解法(1)引进参数法:引进动点的坐标或动线中系数为参数表示变化量,再研究变化的量与参数何时没有关系,找到定点(2)特殊到一般法:根据动点或动线的特殊情况探索出定点,再证明该定点与变量无关跟踪训练1 已知焦距为2的椭圆C:1(ab0)的右顶点为A,直线y与椭圆C交于P,Q两点(P在Q的左边),Q在x轴上的射影为B,且四边形ABPQ是平行四边形(1)求椭圆C的方程;
3、(2)斜率为k的直线l与椭圆C交于两个不同的点M,N.若直线l过原点且与坐标轴不重合,E是直线3x3y20上一点,且EMN是以E为直角顶点的等腰直角三角形,求k的值;若M是椭圆的左顶点,D是直线MN上一点,且DAAM,点G是x轴上异于点M的点,且以DN为直径的圆恒过直线AN和DG的交点,求证:点G是定点(1)解由题意可得2c2,即c,设Q,因为四边形ABPQ为平行四边形,|PQ|2n,|AB|an,所以2nan,n,则1,解得b22,a2b2c24,可得椭圆C的方程为1.(2)解直线ykx(k0)代入椭圆方程,可得(12k2)x24,解得x,可设M,由E是3x3y20上一点,可设E,E到直线k
4、xy0的距离为d,因为EMN是以E为直角顶点的等腰直角三角形,所以OEMN,|OM|d,即有,(*),(*)由(*)得m(k1),代入(*)式,化简整理可得7k218k80,解得k2或.证明由M(2,0),可得直线MN的方程为yk(x2)(k0),代入椭圆方程可得(12k2)x28k2x8k240,可得2xN,解得xN,yNk(xN2),即N,设G(t,0)(t2),由题意可得D(2,4k),A(2,0),以DN为直径的圆恒过直线AN和DG的交点,可得ANDG,即有0,即为(t2,4k)0,解得t0.故点G是定点,即为原点(0,0)题型二定值问题例2 (2018北京)已知抛物线C:y22px经
5、过点P(1,2),过点Q(0,1)的直线l与抛物线C有两个不同的交点A,B,且直线PA交y轴于M,直线PB交y轴于N.(1)求直线l的斜率的取值范围;(2)设O为原点,求证:为定值(1)解因为抛物线y22px过点(1,2),所以2p4,即p2.故抛物线C的方程为y24x.由题意知,直线l的斜率存在且不为0.设直线l的方程为ykx1(k0),由得k2x2(2k4)x10.依题意知(2k4)24k210,解得k0或0kb0)上一点,F1,F2分别为C的左、右焦点,且|F1F2|4,F1MF260,F1MF2的面积为.(1)求椭圆C的方程;(2)设N(0,2),过点P(1,2)作直线l,交椭圆C于异
6、于N的A,B两点,直线NA,NB的斜率分别为k1,k2,证明:k1k2为定值(1)解在F1MF2中,由|MF1|MF2|sin 60,得|MF1|MF2|.由余弦定理,得|F1F2|2|MF1|2|MF2|22|MF1|MF2|cos 60(|MF1|MF2|)22|MF1|MF2|(1cos 60),解得|MF1|MF2|4.从而2a|MF1|MF2|4,即a2.由|F1F2|4得c2,从而b2,故椭圆C的方程为1.(2)证明当直线l的斜率存在时,设斜率为k,显然k0,则其方程为y2k(x1),由得(12k2)x24k(k2)x2k28k0.56k232k0,设A(x1,y1),B(x2,y
7、2),则x1x2,x1x2.从而k1k22k(k4)4.当直线l的斜率不存在时,可得A,B,得k1k24.综上,k1k2为定值直线与圆锥曲线的综合问题数学运算是指在明晰运算对象的基础上,依据运算法则解决数学问题的过程主要包括:理解运算对象,掌握运算法则,探究运算方向,选择运算方法,设计运算程序,求得运算结果等例 椭圆C:1(ab0)的左、右焦点分别是F1,F2,离心率为,过F1且垂直于x轴的直线被椭圆C截得的线段长为1.(1)求椭圆C的方程;(2)点P是椭圆C上除长轴端点外的任一点,连接PF1,PF2,设F1PF2的角平分线PM交C的长轴于点M(m,0),求m的取值范围;(3)在(2)的条件下
8、,过点P作斜率为k的直线l,使得l与椭圆C有且只有一个公共点,设直线PF1,PF2的斜率分别为k1,k2,若k20,证明为定值,并求出这个定值解(1)由于c2a2b2,将xc代入椭圆方程1,得y.由题意知1,即a2b2.又e,所以a2,b1.所以椭圆C的方程为y21.(2)设P(x0,y0)(y00),又F1(,0),F2(,0),所以直线PF1,PF2的方程分别为:y0x(x0)yy00,:y0x(x0)yy00.由题意知.由于点P在椭圆上,所以y1.所以.因为m,2x02,可得,所以mx0,因此mb0)的左、右顶点分别为A,B,左焦点为F,点P为椭圆C上任一点,若直线PA与PB的斜率之积为
展开阅读全文
链接地址:https://www.163wenku.com/p-342273.html