无穷大量与无穷小量课件.ppt
- 【下载声明】
1. 本站全部试题类文档,若标题没写含答案,则无答案;标题注明含答案的文档,主观题也可能无答案。请谨慎下单,一旦售出,不予退换。
2. 本站全部PPT文档均不含视频和音频,PPT中出现的音频或视频标识(或文字)仅表示流程,实际无音频或视频文件。请谨慎下单,一旦售出,不予退换。
3. 本页资料《无穷大量与无穷小量课件.ppt》由用户(三亚风情)主动上传,其收益全归该用户。163文库仅提供信息存储空间,仅对该用户上传内容的表现方式做保护处理,对上传内容本身不做任何修改或编辑。 若此文所含内容侵犯了您的版权或隐私,请立即通知163文库(点击联系客服),我们立即给予删除!
4. 请根据预览情况,自愿下载本文。本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
5. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007及以上版本和PDF阅读器,压缩文件请下载最新的WinRAR软件解压。
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 无穷 大量 小量 课件
- 资源描述:
-
1、二、无穷小量阶的比较5 无穷大量与无穷小量 由于 等同于 因0lim()0,xxf xA0lim()xxf xA 分析”.相同的.所以有人把“数学分析”也称为“无穷小此函数极限的性质与无穷小量的性质在本质上是四、渐近线三、无穷大量一、无穷小量一、无穷小量定义定义1内内有有定定义义,的的某某邻邻域域在在点点设设)(00 xUxf ,0lim0 xfxx若若.0时的无穷小量时的无穷小量为为则称则称xxf为为类似地可以分别定义类似地可以分别定义f.时时的的无无穷穷小小量量和和有有界界量量.0时的有界量时的有界量xx 0fx若若在在点点的的某某个个空空心心邻邻域域内内有有界界,则称则称 f 为为,00
2、 xxxxxxx,显然,无穷小量是有界量显然,无穷小量是有界量.而有界量不一定是无穷而有界量不一定是无穷时的无穷小量;时的无穷小量;为为11 xx例如例如:对于无穷小量与有界量,有如下关系:对于无穷小量与有界量,有如下关系:;时的无穷小量时的无穷小量为为 112xxsin;xxx 为时的无穷小量为时的无穷小量sin.xx 为时的有界量为时的有界量小量小量.1.两个两个(类型相同的类型相同的)无穷小量的和,差,积仍是无穷小量的和,差,积仍是2.无穷小量与有界量的乘积仍为无穷小量无穷小量与有界量的乘积仍为无穷小量.性质性质1 1可由极限的四则运算性质直接得到可由极限的四则运算性质直接得到.所以所以
3、因为因为的的,0lim,00 xfxx 使得当使得当存在存在,0 无穷小量无穷小量.下面对性质加以证明下面对性质加以证明.00|,|()|,1xxf xM 时从而时从而00lim()0,|()|,().xxf xg xM xUx 设对于任意设对于任意0()().f x g xxx这这就就证证明明了了是是时时的的无无穷穷小小量量例如例如:时时为为时的无穷小量,时的无穷小量,为为01sin0 xxxx.01sin时的无穷小量时的无穷小量为为的有界量,那么的有界量,那么xxx.01sinlimlim1sinlim000 xxxxxxx应当注意应当注意,下面运算的写法是错误的:下面运算的写法是错误的:
4、|()()|.f x g x xxy1sin 从几何上看,曲线从几何上看,曲线在在 近旁发生无近旁发生无0 x限密集的振动,其振幅被两条直线限密集的振动,其振幅被两条直线xy 所限制所限制.y-0.1-0.050.050.1-0.1-0.05O0.050.1xxy xxy1sin xy 二、无穷小量阶的比较两个相同类型的无穷小量,它们的和两个相同类型的无穷小量,它们的和、差差、积仍积仍 xgxfxxxgxfxx是关于是关于时时则称则称,若若00lim.10 .,0均是无穷小量均是无穷小量时,时,设当设当xgxfxx 出如下定义出如下定义.两个无穷小量之间趋于零的速度的快慢,我们给两个无穷小量之
5、间趋于零的速度的快慢,我们给这与它们各自趋于零的速度有关这与它们各自趋于零的速度有关.为了便于考察为了便于考察是无穷小量,但是它们的商一般来说是不确定的是无穷小量,但是它们的商一般来说是不确定的.的的高高阶阶无无穷穷小小量量,记记作作.)()()(0 xxxgoxf.)()1()(0 xxoxf.)0,0()(1 kxxoxkk;)0()1(sin xox例如:例如:;)0()(cos1 xxox0()f xxx当为时的无穷小量时,我们记当为时的无穷小量时,我们记2.若存在正数若存在正数 K 和和 L,使得在,使得在 x0 的某一空心邻域的某一空心邻域)(0 xU内,有内,有,)()(Mxgx
6、fL 根据函数极限的保号性,特别当根据函数极限的保号性,特别当0)()(lim0 cxgxfxx时,这两个无穷小量一定是同阶的时,这两个无穷小量一定是同阶的.例如例如:,0时时当当xxcos1 与与2x是同阶无穷小量是同阶无穷小量;则称则称 与与 是是0 xx 时的同阶无穷小量时的同阶无穷小量.)(xf)(xg3.若两个无穷小量在若两个无穷小量在)(0 xU内满足内满足:,)()(Lxgxf 则记则记).()()(0 xxxgOxf 当当0 x时,时,x 与与 xx1sin2是同阶无穷小量是同阶无穷小量.,)(0时的有界量时时的有界量时为为xxxf我们记我们记.)()1()(0 xxOxf 应
7、当注意,若应当注意,若)(,)(xgxf为为0 xx 时的同阶无时的同阶无穷小量,当然有穷小量,当然有.)()()(0 xxxgOxf 反之不一定成立反之不一定成立,例如例如.)0()(1sin xxOxx但是这两个无穷小量不是同阶的但是这两个无穷小量不是同阶的.注意:注意:这里的这里的)()()()(xgOxfxgoxf 与与)(0 xx 和通常的等式是不同的,这两个式子的和通常的等式是不同的,这两个式子的右边,本质上只是表示一类函数例如右边,本质上只是表示一类函数例如)(xgo表示表示 的所有高阶无穷小量的集合的所有高阶无穷小量的集合)(xg)(0 xx.)()()(0 xxxgxf;)0
8、(sin ,1sinlim0 xxxxxx所以所以因为因为;)0(arctan ,1arctanlim 0 xxxxxx所以所以因为因为则称则称若若,1)()(lim.40 xgxfxx时的时的为为与与0 )()(xxxgxf等价无穷小量,记作等价无穷小量,记作也就是说,这里的也就是说,这里的“=”类似于类似于.”“.0)(21cos12 xxx同样还有同样还有根据等价无穷小量的定义,显然有如下性质:根据等价无穷小量的定义,显然有如下性质:),()()(),()()(00 xxxhxgxxxgxf若若.1)()(lim)()(lim)()(lim 000 xhxgxgxfxhxfxxxxxx前
9、面讨论了无穷小量阶的比较前面讨论了无穷小量阶的比较,值得注意的是值得注意的是,并并.)()()(0 xxxhxf那么那么这是因为这是因为不是任何两个无穷小量都可作阶的比较不是任何两个无穷小量都可作阶的比较.例如例如xxsin与与21x均为均为x时的无穷小量时的无穷小量,却不能却不能按照前面讨论的方式进行阶的比较按照前面讨论的方式进行阶的比较.这是因为这是因为)(sin1sin2 xxxxxx是一个无界量,并且是一个无界量,并且(2)sin(2)0.nn下面介绍一个非常有用的定理:下面介绍一个非常有用的定理:定理定理3.12 设函数设函数 f,g,h 在在)(0 xU内有定义内有定义,且且.)(
10、)()(0 xxxgxf;)()(lim,)()(lim)1(00AxhxgAxhxfxxxx 则则若若.)()(lim,)()(lim)2(00AxgxhAxfxhxxxx 则则若若.)()()()(lim)()(lim00Axhxfxfxgxhxgxxxx 证证,1)()(lim,)()(lim)1(00 xgxfAxhxfxxxx因为因为所以所以定理定理 3.12 告诉我们,在求极限时,乘积中的因子告诉我们,在求极限时,乘积中的因子例例1.2sinarctanlim0 xxx计算计算.212lim2sinarctanlim00 xxxxxx解解),0(22sin,arctanxxxxx因
11、为因为所以所以(2)可以类似地证明可以类似地证明.可用等价无穷小量代替,这是一种很有用的方法可用等价无穷小量代替,这是一种很有用的方法.例例2.sinsintanlim30 xxxx 计算计算解解3030sintanlimsinsintanlimxxxxxxxx 30)1cos1(sinlimxxxx xxxxxcos)cos1(sinlim30 3202limxxxx .21 有定义有定义,若对于任给若对于任给定义定义2设函数设函数 f 在在)(0 xU|()|,f xG.)(lim0 xfxx)();(00 xUxUx G 0,存在存在 0,使得当,使得当则称函数则称函数 f(x)当当 x
展开阅读全文