概率论与数理统计(浙大版)第五章第六章课件大数定律和中心极限定理.ppt
- 【下载声明】
1. 本站全部试题类文档,若标题没写含答案,则无答案;标题注明含答案的文档,主观题也可能无答案。请谨慎下单,一旦售出,不予退换。
2. 本站全部PPT文档均不含视频和音频,PPT中出现的音频或视频标识(或文字)仅表示流程,实际无音频或视频文件。请谨慎下单,一旦售出,不予退换。
3. 本页资料《概率论与数理统计(浙大版)第五章第六章课件大数定律和中心极限定理.ppt》由用户(三亚风情)主动上传,其收益全归该用户。163文库仅提供信息存储空间,仅对该用户上传内容的表现方式做保护处理,对上传内容本身不做任何修改或编辑。 若此文所含内容侵犯了您的版权或隐私,请立即通知163文库(点击联系客服),我们立即给予删除!
4. 请根据预览情况,自愿下载本文。本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
5. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007及以上版本和PDF阅读器,压缩文件请下载最新的WinRAR软件解压。
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 概率论 数理统计 浙大 第五 第六 课件 大数 定律 中心 极限 定理
- 资源描述:
-
1、11 大数定律背景 本章的大数定律,对第一章中提出的 “频率稳定性”,给出理论上的论证为了证明大数定理,先介绍一个重要不等式 222225.1,0,1XE XD XP XE XP XE X 定理契比雪夫不等式:设随机变量 具有数学期望方差 则对于任意都有:定理的为:等价形式,f x证明:仅就X为连续型时证之 设X的概率密度为 xP Xf x dx则 22xxf x dx 221xf x dx222D X()f x3 例1:在n重贝努里试验中,若已知每次试验事件A 出现的概率为0.75,试利用契比雪夫不等式估 计n,使A出现的频率在0.74至0.76之间的概率不 小于0.90。nA解:设在 重贝
2、努里试验中,事件 出现的次数为X,,0.75b n则X,0.75,0.1875,E Xnpn D Xnpqn nXfAn又 0.740.760.750.01XPP Xnnn而20.187510.01nn 187510.90n 18750n4 随机变量序列依概率收敛的定义 1235.1,0,0,nnnX Xlim P XXpn 。定义:设随机变量序列X若存在某常数,使得均有:则称随机变量序列依概率收敛于常数,记为:X()pXg xxnpg Xgn 性质:已知,并知函数在=处连续,则122115.2,101limlim1nnnkknnknnkXXnYXnPYPXn 定 理契 比 雪 夫 不 等 式
3、 的 特 殊 情 形:设 随 机 变 量 序 列 X相 互 独 立,且 具 有 相 同 的 数 学 期 望和 相 同 的 方 差,作 前个 随 机 变 量 的 算 术 平 均:则,有:111,nnkkE YEXnnn证明:由于11nnkkD YDXn211nkkD Xn2221nnn22111nkknPXn 由契比雪夫不等式得:111nknklim PXn 辛钦大数定理(弱大数定理)辛钦大数定理(弱大数定理)设设X X1 1,X,X2 2,X Xn n为独立、同分布的随机变量,且有相同为独立、同分布的随机变量,且有相同的数学期望的数学期望E E(X Xi i)=(i=1,2,=1,2,),),
4、则对则对00,有,有11lim1niinXnP1nii=1XXn或或者者,序 序列列 以概率收敛于以概率收敛于 PX 即即 703,3,4分大数定律的重要意义:大数定律的重要意义:贝努里大数定律建立了在大量重复独立试验中事件出现频贝努里大数定律建立了在大量重复独立试验中事件出现频率的稳定性,正因为这种稳定性,概率的概念才有客观意率的稳定性,正因为这种稳定性,概率的概念才有客观意义,贝努里大数定律还提供了通过试验来确定事件概率的义,贝努里大数定律还提供了通过试验来确定事件概率的方法,既然频率方法,既然频率n nA A/n/n与概率与概率p p有较大偏差的可能性很小,我有较大偏差的可能性很小,我们
5、便可以通过做试验确定某事件发生的频率并把它作为相们便可以通过做试验确定某事件发生的频率并把它作为相应的概率估计,这种方法即是在第应的概率估计,这种方法即是在第7 7章将要介绍的参数估章将要介绍的参数估计法,参数估计的重要理论基础之一就是大数定理。计法,参数估计的重要理论基础之一就是大数定理。5.3,0,1AAnApnnnAlim Ppn 定理贝努里大数定理 设事件 在每次试验中发生的概率为,记为 次独立重复试验 中 发生的次数 则有:,Anb n p证明:利用契比雪夫不等式,因故:11,AAnEE nnppnnn20,1AnpqPpnn 于是,有2211AAnpqDD nnpqnnnn1Ann
6、lim Ppn即得:92 中心极限定理背景:有许多随机变量随机变量,它们是由大量大量的相互相互独立的独立的随机变量的综合影响所形成的,而其中每个个别的因素作用都很小很小,这种随机变随机变量量往往服从或近似服从正态分布,或者说它的极限分布是正态分布,中心极限定理正是从数学上论证了这一现象,它在长达两个世纪的时期内曾是概率论研究的中心课题。5.4 定理独立同分布的中心极限定理2110,1.(,),()()().nniinYNN nnbnanP aXbnn nii此定理表明,当 充分大时,近似服从即:X(近似)从而,1X nii=1思考题:X 的近似n分布是什么?2(,)Nn答案:2122112,0
7、,1,2,1,2niiniinnitxinnnXXE XD XiXnnYnXnxRlim P Yxlim Pxedtn 设随机变量X相互独立同分布,则前 个变量的和的标准化变量为:有:证明略。02,4,3分125.5 定理德莫佛-拉普拉斯定理2215.4,(1)2txAnnnplim Pxedtnpp由定理1 0 iiAiA第 次试验时 发生证明:令X第 次试验时 未发生 2201,1lim(),(1)2AtxAnnnAP AppnnpxPxedtxnpp 设为 次贝努里试验中 发生的次数,则对任意,有:12,(1,).nXXbpi则X相互独立同分布,X12,AnnXXX由于()(,(1).N
8、 np nppA即:n近似()(1)()(1)AP anbbnpnppanpnpp 二项分布和正态分布的关系示意例图14 例2:设某种电器元件的寿命服从均值为100小时的指 数分布,现随机取得16只,设它们的寿命是相互 独立的,求这16只元件的寿命的总和大于1920小 时的概率。121616,XX解:记只电器元件的寿命分别为X16116iiX则只电器元件的寿命总和为X,2100,100iiE XD X由题设16116 10016000,14 100400iiXXN根据独立同分布的中心极限定理:Y近似服从 192011920P XP X 1920 16001400 10.80.2119 15 例
9、3:某保险公司的老年人寿保险有1万人参加,每人每年交200元,若老人在该年内死亡,公司付给受益人1万元。设老年人死亡率为0.017,试求保险公司在一年内这项保险亏本的概率。200P X,10000,0.017b n pnp解:设X为一年中投保老人的死亡数,则X由德莫佛-拉普拉斯中心极限定理,保险公司亏本的概率为:1000010000 200PX 20011npnpp 12.3210.01 10思考题:求保险公司至少盈利万元的概率。答案:0.93716 例4:设某工厂有400台同类机器,各台机器发生故障的概 率都是0.02,各台机器工作是相互独立的,试求机 器出故障的台数不小于2的概率。400
10、0.02 0.982.8121(1)17 0.99382.8npqnpP XP Xnpq ,400,0.02 b解:设机器出故障的台数为X 则X,分别用三种方法计算:1.用二项分布计算40039921011 0.98400 0.02 0.980.9972P XP XP X 2.用泊松分布近似计算400 0.028 21011 0.0003350.0026840.9969npP XP XP X 查表得3.用正态分布近似计算17 222225.1,0,1XE XD XP XE XP XE X 定理契比雪夫不等式:设随机变量 具有数学期望方差 则对于任意都有:定理的为:等价形式,f x证明:仅就X为
11、连续型时证之 设X的概率密度为 xP Xf x dx则 22xxf x dx 221xf x dx222D X()f x18122115.2,101limlim1nnnkknnknnkXXnYXnPYPXn 定 理契 比 雪 夫 不 等 式 的 特 殊 情 形:设 随 机 变 量 序 列 X相 互 独 立,且 具 有 相 同 的 数 学 期 望和 相 同 的 方 差,作 前个 随 机 变 量 的 算 术 平 均:则,有:111,nnkkE YEXnnn证明:由于11nnkkD YDXn211nkkD Xn2221nnn22111nkknPXn 由契比雪夫不等式得:111nknklim PXn
12、辛钦大数定理(弱大数定理)辛钦大数定理(弱大数定理)设设X X1 1,X,X2 2,X Xn n为独立、同分布的随机变量,且有相同为独立、同分布的随机变量,且有相同的数学期望的数学期望E E(X Xi i)=(i=1,2,=1,2,),),则对则对00,有,有11lim1niinXnP1nii=1XXn或或者者,序 序列列 以概率收敛于以概率收敛于 PX 即即 大数定律的重要意义:大数定律的重要意义:贝努里大数定律建立了在大量重复独立试验中事件出现频贝努里大数定律建立了在大量重复独立试验中事件出现频率的稳定性,正因为这种稳定性,概率的概念才有客观意率的稳定性,正因为这种稳定性,概率的概念才有客
13、观意义,贝努里大数定律还提供了通过试验来确定事件概率的义,贝努里大数定律还提供了通过试验来确定事件概率的方法,既然频率方法,既然频率n nA A/n/n与概率与概率p p有较大偏差的可能性很小,我有较大偏差的可能性很小,我们便可以通过做试验确定某事件发生的频率并把它作为相们便可以通过做试验确定某事件发生的频率并把它作为相应的概率估计,这种方法即是在第应的概率估计,这种方法即是在第7 7章将要介绍的参数估章将要介绍的参数估计法,参数估计的重要理论基础之一就是大数定理。计法,参数估计的重要理论基础之一就是大数定理。5.3,0,1AAnApnnnAlim Ppn 定理贝努里大数定理 设事件 在每次试
14、验中发生的概率为,记为 次独立重复试验 中 发生的次数 则有:,Anb n p证明:利用契比雪夫不等式,因故:11,AAnEE nnppnnn20,1AnpqPpnn 于是,有2211AAnpqDD nnpqnnnn1Annlim Ppn即得:5.4 定理独立同分布的中心极限定理2110,1.(,),()()().nniinYNN nnbnanP aXbnn nii此定理表明,当 充分大时,近似服从即:X(近似)从而,1X nii=1思考题:X 的近似n分布是什么?2(,)Nn答案:2122112,0,1,2,1,2niiniinnitxinnnXXE XD XiXnnYnXnxRlim P
15、Yxlim Pxedtn 设随机变量X相互独立同分布,则前 个变量的和的标准化变量为:有:证明略。5.5 定理德莫佛-拉普拉斯定理2215.4,(1)2txAnnnplim Pxedtnpp由定理1 0 iiAiA第 次试验时 发生证明:令X第 次试验时 未发生 2201,1lim(),(1)2AtxAnnnAP AppnnpxPxedtxnpp 设为 次贝努里试验中 发生的次数,则对任意,有:12,(1,).nXXbpi则X相互独立同分布,X12,AnnXXX由于()(,(1).N np nppA即:n近似()(1)()(1)AP anbbnpnppanpnpp 二项分布和正态分布的关系23
16、第六章 样本及抽样分布关键词:总 体 个 体 样 本 统 计 量 2分布t 分布F 分布24引言:数理统计学数理统计学是一门关于数据收集、整理、分析 和推断的科学。在概率论中已经知道,由于大量的随机试验中各种结果的出现必然呈现它的规律性,因而从理论上讲只要对随机现象进行足够多次观察,各种结果的规律性一定能清楚地呈现,但是实际上所允许的观察永远是有限的,甚至是少量的。例如:若规定灯泡寿命低于1000小时者为次品,如何确定次品率?由于灯泡寿命试验是破坏性试验,不可能把整批灯泡逐一检测,只能抽取一部分灯泡作为样本进行检验,以样本的信息来推断总体的信息,这是数理统计学研究的问题之一。251 总体和样本
展开阅读全文