电工基础第09章-线性电路过渡过程的时域分析课件.ppt
- 【下载声明】
1. 本站全部试题类文档,若标题没写含答案,则无答案;标题注明含答案的文档,主观题也可能无答案。请谨慎下单,一旦售出,不予退换。
2. 本站全部PPT文档均不含视频和音频,PPT中出现的音频或视频标识(或文字)仅表示流程,实际无音频或视频文件。请谨慎下单,一旦售出,不予退换。
3. 本页资料《电工基础第09章-线性电路过渡过程的时域分析课件.ppt》由用户(三亚风情)主动上传,其收益全归该用户。163文库仅提供信息存储空间,仅对该用户上传内容的表现方式做保护处理,对上传内容本身不做任何修改或编辑。 若此文所含内容侵犯了您的版权或隐私,请立即通知163文库(点击联系客服),我们立即给予删除!
4. 请根据预览情况,自愿下载本文。本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
5. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007及以上版本和PDF阅读器,压缩文件请下载最新的WinRAR软件解压。
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 电工 基础 09 线性 电路 过渡 过程 时域 分析 课件
- 资源描述:
-
1、主要内容主要内容 第一节第一节 电路的动态过程及初始值的确定电路的动态过程及初始值的确定 第二节第二节 一阶电路的零输入响应一阶电路的零输入响应 第三节第三节 一阶电路的零状态响应一阶电路的零状态响应 第四节第四节 一阶电路的全响应和三要素法一阶电路的全响应和三要素法 第五节第五节 阶跃函数和阶跃响应阶跃函数和阶跃响应 第六节第六节 冲激函数和冲激响应冲激函数和冲激响应 第七节第七节 二阶电路的响应二阶电路的响应第九章第九章 线性电路过渡过程的时域分析线性电路过渡过程的时域分析第一节第一节 电路的动态过程及初始值的确定电路的动态过程及初始值的确定一一.电路的动态过程电路的动态过程1.稳态稳态:
2、电路的激励和响应在一定的时间内都是恒定不变或按周期电路的激励和响应在一定的时间内都是恒定不变或按周期规律变动的,这种工作状态称为稳定状态,简称稳态。规律变动的,这种工作状态称为稳定状态,简称稳态。2.换路换路:电路中开关的通断、元件参数的改变、连接方式的改变等情电路中开关的通断、元件参数的改变、连接方式的改变等情况统称为换路况统称为换路.2.动态、暂态动态、暂态:由于换路引起稳定状态的改变,含电容或电感这两:由于换路引起稳定状态的改变,含电容或电感这两种储能元件的电路中,他们的储能不可能跃变,需要有一个过种储能元件的电路中,他们的储能不可能跃变,需要有一个过渡过程,这就是动态过程。动态过程往往
3、是短暂的,也称之为渡过程,这就是动态过程。动态过程往往是短暂的,也称之为暂态暂态.第一节第一节 电路的动态过程及初始值的确定电路的动态过程及初始值的确定二二.换路定律换路定律 换路瞬间换路瞬间,电容电压不能跃变、电感电流不能跃变,电容电压不能跃变、电感电流不能跃变.表达式为表达式为三三.初始值的确定初始值的确定(1)独立初始值)独立初始值uC(0+)、iL(0+)的确定:的确定:通过换路前的稳态电路求得通过换路前的稳态电路求得uC(0-)、)、iL(0-),再根据再根据换路定律换路定律 得得uC(0+)、iL(0+)。0000CCLLu()u()i()i()第一节第一节 电路的动态过程及初始值
4、的确定电路的动态过程及初始值的确定(2)其它相关初始值的确定:)其它相关初始值的确定:画画t=0+时刻的等效电路时刻的等效电路:将电路中的电容元件用电压为将电路中的电容元件用电压为uC(0+)的电压源替代,电感元件用电流为的电压源替代,电感元件用电流为iL(0+)的电流源替代。在的电流源替代。在0+等效电路中根据等效电路中根据KCL、KVL求得各求得各相关初始值相关初始值.第一节第一节 电路的动态过程及初始值的确定电路的动态过程及初始值的确定例例9 92 2 图图a a所示电路中,已知所示电路中,已知U US S=48V=48V,R R1 1=2=2,R R2 2=2=2,R R3 3=3=3
5、,L=0L=0.5H.5H,C=4.7C=4.7 F F,开关,开关S S在在t=0t=0时合上,设时合上,设S S合上前电路已进入稳态。求:合上前电路已进入稳态。求:i i1 10+0+)、)、i i2 2(0+0+)、)、i i3 3(0+0+)、)、u uL L(0+0+)、)、u uC C(0+0+)。)。图图9-例例9-图图第一节第一节 电路的动态过程及初始值的确定电路的动态过程及初始值的确定解:解:i i2 2(0+0+)、u uC C(0+0+)为独立为独立初始值初始值,在图,在图b所示的所示的t=0 等效电等效电路中得路中得则则在图在图c所示的所示的t=0+等效电路中得等效电路
6、中得312122 200480012220024sCi()A;Ui()i()ARRu()R i()V2200120024CCi()i()Au()u()V31232 248240830002000482 1224Lsi()A;i()i()i()Au()UR i()()V第二节第二节 一阶电路的零输入响应一阶电路的零输入响应 含有一个或可等效为一个储能元件的线性电路方程含有一个或可等效为一个储能元件的线性电路方程可用一阶线性、常系数微分方程描述,称其为一阶电路。可用一阶线性、常系数微分方程描述,称其为一阶电路。电路无外加激励,响应仅由储能元件的初始值引起电路无外加激励,响应仅由储能元件的初始值引起
7、,称为零输入响应,称为零输入响应,一、一、RC电路的零输入响应电路的零输入响应 1.电路方程及求解电路方程及求解第二节第二节 一阶电路的零输入响应一阶电路的零输入响应 根据根据KVL,图示电路在换路后的图示电路在换路后的电路方程为电路方程为 方程通解为方程通解为 对应的特征方程是对应的特征方程是 特征方程的解为特征方程的解为ptCAetu)(0CCudtduRC0t图图9-6 RC电路的零输入响应电路的零输入响应01RCp1pRC 第二节第二节 一阶电路的零输入响应一阶电路的零输入响应 则则 代入初始值:代入初始值:所以方程的解为所以方程的解为2.时间常数时间常数 上式中的上式中的RC具有时间
8、的量纲,单位为秒(具有时间的量纲,单位为秒(s),称为),称为时间常时间常 数数。记作。记作0000tttRCRCCttCRCu(t)AeU eU eduUUi(t)CeedtRR tRCCu(t)Ae0000CCu()u()UAU得0tRC第二节第二节 一阶电路的零输入响应一阶电路的零输入响应二、二、RL电路的零输入响应电路的零输入响应 1.电路方程及求解电路方程及求解 根据根据KVL,图示电路在换路后的电路方程为,图示电路在换路后的电路方程为 初始值:初始值:求解一阶微分方程可得求解一阶微分方程可得0LLdiLRidt0t000LLi()i()I图图9-11 RL9-11 RL电路的零输入
9、响应电路的零输入响应2.时间常数时间常数 上式中的上式中的L/R具有时间的量纲,单位为秒(具有时间的量纲,单位为秒(s),称为),称为时间常时间常 数数。记作。记作0000tRRttLLLtRtLLLi(t)AeI eI ediu(t)LRI eRI edt 0tLR第二节第二节 一阶电路的零输入响应一阶电路的零输入响应第三节第三节 一阶电路的零状态响应一阶电路的零状态响应 储能元件的初始状态为零,即储能元件的初始状态为零,即uc(0+)=0,iL(0+)=0,响应仅由外施激励源而引起响应仅由外施激励源而引起,称为零状态响应。称为零状态响应。一、一、RC电路的零状态响应电路的零状态响应 1.电
10、路方程及求解电路方程及求解 根据根据KVL,图示电路,图示电路 在换路后的电路方程为在换路后的电路方程为SCCUudtduRC图图9-17 RC电路的零状态响应电路的零状态响应0t第三节第三节 一阶电路的零状态响应一阶电路的零状态响应 这是一阶非齐次方程,其解由两部分组成,即由它的一个特解这是一阶非齐次方程,其解由两部分组成,即由它的一个特解 和对应的齐次方程的通解组成。可写成和对应的齐次方程的通解组成。可写成 代入初始值代入初始值 可解得可解得 式中式中 为电路的时间常数为电路的时间常数.tSCCCAeUtututu)()()(0)0()0(CCuu1ttRCCSSSttCssRCu(t)U
11、U eU(e)duUUi(t)CeedtRR0tRC第三节第三节 一阶电路的零状态响应一阶电路的零状态响应 2.稳态值稳态值 一阶电路零状态响应的特解是电路换路后进入新的稳态时一阶电路零状态响应的特解是电路换路后进入新的稳态时(t=)的值,称之为的值,称之为稳态值稳态值,它受外施激励的制约,也称为,它受外施激励的制约,也称为强制强制分量分量;而通解不受外施激励的制约,它随时间的增长而衰减,衰减快慢而通解不受外施激励的制约,它随时间的增长而衰减,衰减快慢取决于时间常数,最终趋于零,称之为取决于时间常数,最终趋于零,称之为自由分量自由分量或或暂态分量暂态分量.这样这样RC电路电路零状态响应零状态响
12、应uC的解也可表达为的解也可表达为1tCCu(t)U()(e)0t第三节第三节 一阶电路的零状态响应一阶电路的零状态响应二、二、RL电路的零状态响应电路的零状态响应 根据根据KVL,图示电路在换路后的电路方程为,图示电路在换路后的电路方程为 这也是一阶非齐次方程这也是一阶非齐次方程,其解由它的一个特解和对应其解由它的一个特解和对应 的齐次方程的通解组成。的齐次方程的通解组成。LLSdiLRiUdt0t图图9-20 RL9-20 RL电路的零状态响应电路的零状态响应第三节第三节 一阶电路的零状态响应一阶电路的零状态响应 可解得可解得 式中式中 为电路的时间常数为电路的时间常数.同样同样,方程的特
13、解是稳态值,其解方程的特解是稳态值,其解iL也可表达为也可表达为LR0t11tRtSSLLtRtLLLssUUi(t)(e)(e)RRdiu(t)LU eU edt0t1tLLi(t)i()(e)第四节第四节 一阶电路的全响应及三要素法一阶电路的全响应及三要素法 当一个非零初始状态的一阶电路受到外加激励作用时,当一个非零初始状态的一阶电路受到外加激励作用时,电路的响应称为电路的响应称为全响应全响应。一一、全响应的两种分解方式、全响应的两种分解方式 1.全响应全响应=零输入响应零输入响应+零状态响应零状态响应 2.全响应全响应=稳态分量稳态分量+暂态分量暂态分量 第四节第四节 一阶电路的全响应一
展开阅读全文