生物医学信号处理课件.ppt
- 【下载声明】
1. 本站全部试题类文档,若标题没写含答案,则无答案;标题注明含答案的文档,主观题也可能无答案。请谨慎下单,一旦售出,不予退换。
2. 本站全部PPT文档均不含视频和音频,PPT中出现的音频或视频标识(或文字)仅表示流程,实际无音频或视频文件。请谨慎下单,一旦售出,不予退换。
3. 本页资料《生物医学信号处理课件.ppt》由用户(三亚风情)主动上传,其收益全归该用户。163文库仅提供信息存储空间,仅对该用户上传内容的表现方式做保护处理,对上传内容本身不做任何修改或编辑。 若此文所含内容侵犯了您的版权或隐私,请立即通知163文库(点击联系客服),我们立即给予删除!
4. 请根据预览情况,自愿下载本文。本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
5. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007及以上版本和PDF阅读器,压缩文件请下载最新的WinRAR软件解压。
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 生物医学 信号 处理 课件
- 资源描述:
-
1、1医学信号处理医学信号处理参考教材:刘海龙编著,参考教材:刘海龙编著,生物医学信号处生物医学信号处理理,化学工业出版社,化学工业出版社 教师:任小梅教师:任小梅2本课程主要内容本课程主要内容一、一、随机信号的特征和描述方法随机信号的特征和描述方法;二、二、随机信号及线性时不变系统随机信号及线性时不变系统;三、三、信号检测和信号的参数估计信号检测和信号的参数估计;四、四、功率谱估计功率谱估计;五、五、自适应滤波自适应滤波;六、匹配滤波;六、匹配滤波;七、维纳滤波和卡尔曼滤波;七、维纳滤波和卡尔曼滤波;八、小波变换和小波滤波;八、小波变换和小波滤波;3第一章第一章 绪论绪论一、生物电现象一、生物电
2、现象二、生物医学信号的特点;二、生物医学信号的特点;二、生物医学信号处理系统框图;二、生物医学信号处理系统框图;4 生物电生物电 动作电位动作电位(参见电子稿参见电子稿)图示图示 动作电位连续发放,并与噪声叠加形成医动作电位连续发放,并与噪声叠加形成医学信号。学信号。5生物医学信号的特点 信号弱信号弱 噪声强噪声强 频率低频率低 随机性强随机性强6生物子系统生物子系统信号变换子系统信号变换子系统信号放大子系统信号放大子系统信号记录及显示子系统信号记录及显示子系统模数及数模转换子系统模数及数模转换子系统计算机子系统计算机子系统生物医学信号处理框生物医学信号处理框图图7第二章第二章 随机信号的随机
3、信号的 特征特征 和和 描述方法描述方法Random signal Representation82.1 2.1 基本概念基本概念随机过程随机过程:随某些参量变化的随机变量称为随机函数。通常随某些参量变化的随机变量称为随机函数。通常将以时间为参量的随机函数称为随机过程,也称为随机将以时间为参量的随机函数称为随机过程,也称为随机信号。信号。自然界中变化的过程可分为两大类:自然界中变化的过程可分为两大类:确定性过程和随机过程确定性过程和随机过程确定性过程确定性过程:就是事物的变化过程可以用一个(或几个):就是事物的变化过程可以用一个(或几个)时间时间t t的确定的函数来描述。的确定的函数来描述。随
4、机过程随机过程:就是事物变化的过程不能用一个(或几个):就是事物变化的过程不能用一个(或几个)时间时间t t的确定的函数来加以描述,是随机地随时间变化的的确定的函数来加以描述,是随机地随时间变化的过程。过程。92.1.1 随机过程的分类1)按照时间和状态是连续还是离散来分类:按照时间和状态是连续还是离散来分类:连续型随机过程连续型随机过程 随机过程随机过程X(t)对于任意时刻对于任意时刻 ,X(ti)都是连续型都是连续型随机变量,即时间和状态都是连续的情况,称这类随随机变量,即时间和状态都是连续的情况,称这类随机过程为连续型随机过程。机过程为连续型随机过程。Tti连续随机序列连续随机序列 随机
5、过程随机过程X(t)在任一离散时刻的状态是连续型随机在任一离散时刻的状态是连续型随机变量,即时间是离散的,状态是连续的情况,称这变量,即时间是离散的,状态是连续的情况,称这类随机过程为连续随机序列。类随机过程为连续随机序列。10离散随机过程离散随机过程 随机过程随机过程X(t)对于任意时刻对于任意时刻 ,X(ti)都是离散都是离散型随机变量,即时间是连续的,状态是离散的情况。型随机变量,即时间是连续的,状态是离散的情况。Tti离散随机序列离散随机序列 对应于时间和状态都是离散的情况,即随机数字对应于时间和状态都是离散的情况,即随机数字信号。信号。1112 2)按照随机过程的分布函数(或概率密度
6、)的不按照随机过程的分布函数(或概率密度)的不同特性进行分类同特性进行分类 按照这种分类法,最重要的就是平稳随机过程和按照这种分类法,最重要的就是平稳随机过程和非平稳随机过程。非平稳随机过程。13平稳随机过程平稳随机过程随机信号的统计特性与开始进行随机信号的统计特性与开始进行统计分析的时刻无关,如白噪声。否则,就是非平统计分析的时刻无关,如白噪声。否则,就是非平稳随机过程,如脑电信号。稳随机过程,如脑电信号。平稳随机过程还有平稳随机过程还有弱平稳和强平稳弱平稳和强平稳之分。前者只有之分。前者只有一、二阶统计特征(如均值、方差、自相关函数、一、二阶统计特征(如均值、方差、自相关函数、功率谱密度等
7、)具平稳特性;后者则任何阶统计特功率谱密度等)具平稳特性;后者则任何阶统计特性都具平稳特性。性都具平稳特性。平稳随机过程又分为平稳随机过程又分为各态遍历的随机过程各态遍历的随机过程和和一般平一般平稳随机过程。稳随机过程。14各态遍历随机过程各态遍历随机过程所有样本在固定时刻的统计所有样本在固定时刻的统计特征和单一样本在全时间的统计特征一致,称为各特征和单一样本在全时间的统计特征一致,称为各态遍历随机过程,如投硬币过程;否则就是一般平态遍历随机过程,如投硬币过程;否则就是一般平稳随机过程。稳随机过程。非平稳生理信号在一段时间内近似平稳,可把非平稳生理信号在一段时间内近似平稳,可把它看成分段平稳的
8、它看成分段平稳的“准平稳准平稳”过程,所以,平稳过过程,所以,平稳过程的分析方法是研究非平稳过程的基础。程的分析方法是研究非平稳过程的基础。信号还可以分为信号还可以分为功率信号和能量信号功率信号和能量信号,随机信,随机信号一般属于能量无限、功率有限的功率信号。号一般属于能量无限、功率有限的功率信号。152.1.2 随机信号的性质随机信号是普遍存在的。随机信号是普遍存在的。1、信号中任何一点上的取值都是不能先验确定的、信号中任何一点上的取值都是不能先验确定的随机变量;随机变量;2、信号可以用它的统计平均特征来表征。、信号可以用它的统计平均特征来表征。162.2 2.2 随机信号的表示法随机信号的
9、表示法图中每一条曲图中每一条曲线代表随机信线代表随机信号的一个样本号的一个样本。17 为了完成地描述随机信号统计特征需要采用随为了完成地描述随机信号统计特征需要采用随机信号各个时刻取值的高阶概率密度函数,即机信号各个时刻取值的高阶概率密度函数,即 每一时刻一阶概率密度函数每一时刻一阶概率密度函数p(xi,ti)每一时刻二阶概率密度函数每一时刻二阶概率密度函数p(xi,xj,ti,tj)每一时刻三阶概率密度函数每一时刻三阶概率密度函数p(xi,xk,xj,ti,tk,tj),等等。等等。采用阶数越高,描述越完整,但实际很难做到,处采用阶数越高,描述越完整,但实际很难做到,处理计算太繁琐,很少采用
10、。理计算太繁琐,很少采用。通常用一阶、二阶统计特征描述,如通常用一阶、二阶统计特征描述,如均值、均方、均值、均方、自相关函数、功率谱自相关函数、功率谱等。等。18概率密度函数是随机变量分布函数的导数,表示随概率密度函数是随机变量分布函数的导数,表示随机变量取值的统计特性。机变量取值的统计特性。2.2.1 概率密度函数随机过程的概率分布函数随机过程的概率分布函数1.一维概率分布一维概率分布 对于任意的时刻对于任意的时刻t,X(t)是一个随机变量,设是一个随机变量,设x为任为任意实数,定义意实数,定义 为随机过程为随机过程X(t)的一维分布函数。的一维分布函数。)(),(xtXPtxFX19 若若
11、 的一阶偏导数存在,则定义的一阶偏导数存在,则定义 为随机过程为随机过程X(t)的的一维概率密度一维概率密度。),(txFXxtxFtxfXX),(),(202.二维概率分布和二维概率分布和n维概率分布维概率分布 对于随机过程对于随机过程X(t),在任意两个时刻,在任意两个时刻t1和和t2可得到两可得到两个随机变量个随机变量X(t1)和和X(t2),可构成二维随机变量,可构成二维随机变量X1,X2,它的二维分布函数它的二维分布函数 称为随机过程称为随机过程X(t)的的二维概率分布函数二维概率分布函数。)(,)(),;,(22112121xtXxtXPttxxFX 若若 对对x1,x2的偏导数存
12、在,则定义的偏导数存在,则定义 为随机过程为随机过程X(t)的的二维概率密度二维概率密度。),;,(2121ttxxFX21212122121),;,(),;,(xxttxxFttxxfXX21 对于任意的时刻对于任意的时刻t1,t2,tn,X(t1),X(t2),X(tn)是一组是一组随机变量,定义这组随机变量的联合分布为随机过程随机变量,定义这组随机变量的联合分布为随机过程X(t)的的n维概率分布维概率分布,即定义,即定义 为随机过程为随机过程X(t)的的n维概率分布函数。维概率分布函数。)(,)(,)(),;,(22112121nnnnXxtXxtXxtXPtttxxxF为随机过程为随机
展开阅读全文