河北省衡水中学2019届高三第二学期一模考试理科数学试题(解析版).doc
- 【下载声明】
1. 本站全部试题类文档,若标题没写含答案,则无答案;标题注明含答案的文档,主观题也可能无答案。请谨慎下单,一旦售出,不予退换。
2. 本站全部PPT文档均不含视频和音频,PPT中出现的音频或视频标识(或文字)仅表示流程,实际无音频或视频文件。请谨慎下单,一旦售出,不予退换。
3. 本页资料《河北省衡水中学2019届高三第二学期一模考试理科数学试题(解析版).doc》由用户(烟花三月012)主动上传,其收益全归该用户。163文库仅提供信息存储空间,仅对该用户上传内容的表现方式做保护处理,对上传内容本身不做任何修改或编辑。 若此文所含内容侵犯了您的版权或隐私,请立即通知163文库(点击联系客服),我们立即给予删除!
4. 请根据预览情况,自愿下载本文。本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
5. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007及以上版本和PDF阅读器,压缩文件请下载最新的WinRAR软件解压。
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 河北省 衡水 中学 2019 届高三 第二 学期 考试 理科 数学试题 解析 下载 _考试试卷_数学_高中
- 资源描述:
-
1、2018-2019学年度第二学期高三年级一模考试数学(理科)试卷第I卷(选择题共60分)一、选择题(每小题5分,共60分.下列每小题所给选项只有一项符合题意,请将正确答案的序号填涂在答题卡上)1.已知全集为,集合,则( )A. B. C. D. 【答案】B【解析】【分析】先化简集合B,再求得解.【详解】由题得B=x|x2或x,所以,所以.故选:B【点睛】本题主要考查集合的交集和补集运算,意在考查学生对这些知识的理解掌握水平和分析推理能力.2.若复数满足,则在复平面内的共轭复数对应的点位于( )A. 第一象限B. 第二象限C. 第三象限D. 第四象限【答案】A【解析】【分析】先求出复数z和,再求
2、出在复平面内的共轭复数对应的点的位置得解.【详解】由题得,所以,所以在复平面内的共轭复数对应的点为(1,1),在第一象限.故选:A【点睛】本题主要考查复数的模和复数的除法,意在考查学生对这些知识的理解掌握水平和分析推理能力.3. 某单位共有36名员工,按年龄分为老年、中年、青年三组,其人数之比为3:2:1,现用分层抽样的方法从总体中抽取一个容量为12的样本,则青年组中甲、乙至少有一人被抽到的概率为( )A. B. C. D. 【答案】B【解析】试题分析:按分层抽样应该从青年职工组中抽取人,其中青年组共有人,这六人中抽取两人的基本事件共有种,甲乙至少有一人抽到的对立事件为甲乙均没被抽到,基本事件
3、为种,因此青年组中甲、乙至少有一人被抽到的概率为,故选B考点:1分层抽样;2古典概型4.如图是2017年第一季度五省情况图,则下列陈述中不正确的是( )A. 2017年第一季度增速由高到低排位第5的是浙江省.B. 与去年同期相比,2017年第一季度的总量实现了增长.C. 去年同期河南省的总量不超过4000亿元.D. 2017年第一季度总量和增速由高到低排位均居同一位的省只有1个.【答案】D【解析】分析:解决本题需要从统计图获取信息,解题的关键是明确图表中数据的来源及所表示的意义,依据所代表的实际意义获取正确的信息详解:由折线图可知A、B正确;,故C正确;2017年第一季度GDP总量和增速由高到
4、低排位均居同一位的省有江苏均第一;河南均第四,共2个.故D错误. 故选D.点睛:本题考查条形统计图和折线统计图的综合运用,读懂统计图,从不同的统计图得到必要的住处是解决问题的关键5.是双曲线右支上一点, 直线是双曲线的一条渐近线.在上的射影为,是双曲线的左焦点, 则的最小值为( )A. 1B. C. D. 【答案】D【解析】设双曲线的右焦点为,连接,则(为点到渐近线距离),即的最小值为;故选D.点睛:本题考查双曲线的定义和渐近线方程;在处理涉及椭圆或双曲线的点到两焦点的距离问题时,往往利用椭圆或双曲线的定义,将曲线上的点到一焦点的距离合理转化到另一个焦点间的距离.6.如图,在三棱柱中,两两互相
5、垂直,是线段,上的点,平面与平面 所成(锐)二面角为,当最小时,( )A. B. C. D. 【答案】B【解析】【分析】以为原点,为轴,为轴,为轴,建立空间直角坐标系,利用向量法能求出的大小【详解】以为原点,为轴,为轴,为轴,建立空间直角坐标系,设,设,则,0,1,0,1,1,0,设平面的法向量,取,得,平面的法向量,0,平面与平面所成(锐二面角为,解得,当|最小时,故选:【点睛】本题考查角的大小的求法,考查空间中线线、线面、面面间的位置关系等基础知识,考查运算求解能力,是中档题7.已知函数,在的大致图象如图所示,则可取( )A. B. C. D. 【答案】B【解析】分析:从图像可以看出为偶函
6、数,结合的形式可判断出为偶函数,故得的值,最后通过得到的值详解:为上的偶函数,而为上的偶函数,故为上的偶函数,所以因为,故,因,故,所以,因,故,所以综上,故选B 点睛:本题为图像题,考察我们从图形中扑捉信息的能力,一般地,我们需要从图形得到函数的奇偶性、单调性、极值点和函数在特殊点的函数值,然后利用所得性质求解参数的大小或取值范围8.九章算术中描述的“羡除”是一个五面体,其中有三个面是梯形,另两个面是三角形.已知一个羡除的三视图如图粗线所示,其中小正方形网格的边长为1,则该羡除的体积为( )A. 20B. 24C. 28D. 32【答案】B【解析】【分析】画出五面体的直观图,利用割补法求其体
7、积.【详解】五面体对应的直观图为:由三视图可得:,三个梯形均为等腰梯形且平面平面到底面的距离为,间的距离为.如下图所示,将五面体分割成三个几何体,其中为体积相等的四棱锥,且,则棱柱为直棱柱,为直角三角形.又;,故五面体的体积为.故选A.【点睛】本题考查三视图,要求根据三视图复原几何体,注意复原前后点、线、面的关系而不规则几何体的体积的计算,可将其分割成体积容易计算的规则的几何体.9.在中,内角所对的边分别是,且边上的高为,则 的最大值是( )A. B. C. D. 【答案】D【解析】,这个形式很容易联想到余弦定理:cosA,而条件中的“高”容易联想到面积, bcsinA,即a22bcsinA,
8、将代入得:b2c22bc(cosAsinA),2(cosAsinA)4sin(A),当A时取得最大值4,故选D点睛:三角形中最值问题,一般转化为条件最值问题:先根据正、余弦定理及三角形面积公式结合已知条件灵活转化边和角之间的关系,利用基本不等式或函数方法求最值. 在利用基本不等式求最值时,要特别注意“拆、拼、凑”等技巧,使其满足基本不等式中“正”(即条件要求中字母为正数)、“定”(不等式的另一边必须为定值)、“等”(等号取得的条件)的条件才能应用,否则会出现错误.10.已知函数,若,且,则的最小值为( )A. B. C. D. 【答案】D【解析】【分析】先分析得到的最小值等于函数f(x)的绝对
9、值最小的零点的2倍,再求函数的绝对值最小的零点即得解.【详解】由题得等于函数的零点的2倍,所以的最小值等于函数f(x)的绝对值最小的零点的2倍,令所以,所以所以绝对值最小的零点为,故的最小值为.故选:D【点睛】本题主要考查正弦型函数的图像和性质,意在考查学生对这些知识的理解掌握水平和分析推理能力.11.过抛物线的焦点的一条直线交抛物线于、两点,正三角形的顶点在直线上,则的边长是( )A. 8B. 10C. 12D. 14【答案】C【解析】【分析】设的中点为,过、分别作、垂直于直线于、,设,求出,利用弦长公式,可得结论【详解】抛物线的焦点为,设的中点为,过、分别作、垂直于直线于、,设,由抛物线定
10、义知:,即,所以直线AB的斜率k=,所以直线AB的方程为,联立直线AB方程和抛物线方程得,所以.故选:【点睛】本题考查抛物线的方程与性质,考查抛物线的定义,正确运用抛物线的定义是关键12.设函数(,为自然对数的底数),定义在上的函数满足,且当时,若存在,且为函数的一个零点,则实数的取值范围为( )A. B. C. D. 【答案】D【解析】【分析】先构造函数,由题意判断出函数的奇偶性,再对函数求导,判断其单调性,进而可求出结果.【详解】构造函数,因为,所以,所以为奇函数,当时,所以在上单调递减,所以R上单调递减.因为存在,所以,所以,化简得,所以,即令,因为为函数的一个零点,所以在时有一个零点因
11、为当时,所以函数在时单调递减,由选项知,又因为,所以要使在时有一个零点,只需使,解得,所以a的取值范围为,故选D.【点睛】本题主要考查函数与方程的综合问题,难度较大.第卷(共90分)二、填空题:(本大题共4小题,每题5分,共20分)13.若实数,满足约束条件,则的最小值为_.【答案】【解析】分析】先画出可行域,利用目标函数的几何意义求z的最小值【详解】作出约束条件,表示的平面区域(如图示:阴影部分):由得A(,),由z3x+y得y3x+z,平移y3x,易知过点A时直线在y上截距最小,所以的最小值为+故答案为:2【点睛】本题考查了简单线性规划问题,关键是画出可行域并理解目标函数的几何意义14.若
展开阅读全文