解题策略的种类Problem课件.ppt
- 【下载声明】
1. 本站全部试题类文档,若标题没写含答案,则无答案;标题注明含答案的文档,主观题也可能无答案。请谨慎下单,一旦售出,不予退换。
2. 本站全部PPT文档均不含视频和音频,PPT中出现的音频或视频标识(或文字)仅表示流程,实际无音频或视频文件。请谨慎下单,一旦售出,不予退换。
3. 本页资料《解题策略的种类Problem课件.ppt》由用户(三亚风情)主动上传,其收益全归该用户。163文库仅提供信息存储空间,仅对该用户上传内容的表现方式做保护处理,对上传内容本身不做任何修改或编辑。 若此文所含内容侵犯了您的版权或隐私,请立即通知163文库(点击联系客服),我们立即给予删除!
4. 请根据预览情况,自愿下载本文。本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
5. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007及以上版本和PDF阅读器,压缩文件请下载最新的WinRAR软件解压。
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 解题 策略 种类 Problem 课件
- 资源描述:
-
1、談問題解決-以數學科教學為例 左太政/高雄師範大學數學系數學解題的概念數學解題歷程及策略範例解說一、緒論(一)何謂數學問題?許多學者對於問題有不同解釋 Wickelgren(1974)指出:問題由三種型式的訊息(informations)組合而成,即1.給定條件(givens)、2.運算(operations)、3.目標(goals)。給定條件 乃是指由一些objects、things、pieces of materials等所表達的方式,以及包含一些假設、定義、公設、公理、性質及定理等。運算 主要是指將給定條件中一個或數個表達方式轉換成新的表達方式,另一種說法是指變換(transformat
2、ions)及推測法則(rules of inference)。目標 是指我們期望去完成的最終表達方式,簡言之,就是題目要求或證明什麼。數學中的問題解決數學中的問題解決問題,是數學的核心,學習數學就是學習如何解決問題,包括那些可以轉換成數學題的各類問題(即外在連結)。由於解題的態度和學習方法的不同,將影響其學習成效。問題與習題的區別問題解決中的問題,並不包括常規數學問題,而是指非常規數學問題和數學的應用問題。常規數學問題,就是指課本中既已唯一確定的方法或可以遵循的一般規則、原理,而解法程序和每一步驟也都是完全確定的數學問題。解題的意義 知識的表現指解題者擁有特殊解決問題的學科知識,如幾何學、代數
3、學、數論、機率與統計等;解題的表現指解題者以已知一般的學科知識,以程序性的方式,如四則運算、作圖表等,靈活運用來解決問題。數學解題的目的 要訓練、培養學生、使他們有能力與自信面對並解決非例行性的數學問題。在建構理論的觀點下,教師是佈題者(problem poster),而不是解題者(problem solver);是讓學生自行提出有效的解題活動,而非只是讓學生做一個模仿者。教師能依下列方式教導學生,將有助於數學的學習 能教導學生將解題視為是研究的觀點,將所解的每一道題目,仔細加以研究。在解題之前,必須探討其與已知的數學知識、方法及過去解題經驗之間的聯繫,從中找出一條或多條解題思路。教師能依下列
4、方式教導學生,將有助於數學的學習 解題之後,需再研究其多種不同的解法;嘗試將題目條件的變化或推廣,進而產生新的題目。如果能這樣做,達到貫通數學知識和數學方法的目的,以提高學生解題能力及學習的成效。簡言之,數學解題是指:解題係指當某人在解一個數學問題時,這個人為獲得答案所從事的一系列活動。數學解題係指在解決數學問題過程中需要用到一些數學概念、原理或方法等。二、解題策略及 解題歷程參考下列二位學者1.G.Polya2.A.SchoenfeldSchoenfeld 提及:解題成功的因素解題能否成功,取決於有關知識及技能所涉及的四個範疇 (1)資源(resources):有關數學的程序知識與性質等。(
5、2)捷思(heuristics):解題的策略及技巧。(3)掌握(control):能決定什麼是及何時使用上述所提及的資源及策略。(4)信念(beliefs):從數學觀點如何確定能解決問題。(一)解題策略的意義策略是指完成任務的方法。解題策略是指解決數學問題所使用的方法。解題策略的種類解題策略的種類(Problem-Solving Strategies)Algorithms Heuristics Trial-and-Error Insight 1.Algorithms An algorithm is a step-by-step procedure that will always produc
6、e a correct solution.A mathematical formula is a good example of a problem-solving algorithm.While an algorithm guarantees an accurate answer,it is not always the best approach to problem solving.2.Heuristics Heuristic refers to experience-based techniques for problem solving,learning,and discovery.
7、Examples of this method include using a“rule of thumb”經驗法則經驗法則,an educated guess,an intuitive judgment,or common sense.In more precise terms,heuristics are strategies using readily accessible,though loosely applicable,information to control problem solving in human beings and machines.Polya對Heuristi
8、c 的說明:If you are having difficulty understanding a problem,try drawing a picture.If you cant find a solution,try assuming that you have a solution and seeing what you can derive from that(working backward).If the problem is abstract,try examining a concrete example(如求長方體的對角線長如求長方體的對角線長).Try solving
9、a more general problem first(the inventors paradox:the more ambitious plan may have more chances of success).捷思策略(Heuristic Strategy)A general suggestion or technique which helps problem-solvers to understand or to solve a problem.表示一種一般的建議(general suggestion)或策略,可協助解題者瞭解題意與有效地利用他們的資源去解題。3.Trial-and
10、-Error A trial-and-error approach to problem-solving involves trying a number of different solutions and ruling out those that do not work.This approach can be a good option if you have a very limited number of options available.If there are many different choices,you are better off narrowing down t
11、he possible options using another problem-solving technique before attempting trial-and-error.4.Insight In some cases,the solution to a problem can appear as a sudden insight.According to researchers,insight can occur because you realize that the problem is actually similar to something that you hav
12、e dealt with in the past,but in most cases the underlying mental processes that lead to insight happen outside of awareness.George Plya,(Hungary,1887-1985)Plya worked in probability,analysis,number theory,geometry,combinatorics and mathematical physics.The aim of heuristic is to study the methods an
13、d rules of discovery and invention.Heuristic,as an adjective,means serving to discover.its purpose is to discover the solution of the present problem.What is good education?Systematically giving opportunity to the student to discover things by himself.Polya的至理名言:If you cant solve a problem,then ther
14、e is an easier problem you cant solve:find it.這是所謂類比這是所謂類比(屬於Heuristic解法的一種)G.Polya and“How to Solve It!”An outline of Polyas framework (即解題歷程)1.Understanding the Problem Identify the goal The first step is to read the problem and make sure that you understand it clearly.Ask yourself the following q
15、uestions:(1)What is the unknown?(2)What are the given quantities?What is the conditions?Are there any constraints?Polya taught teachers to ask students questions such as:Do you understand all the words used in stating the problem?What are you asked to find or show?Can you restate the problem in your
16、 own words?Can you think of a picture or a diagram that might help you understand the problem?Is there enough information to enable you to find a solution?2.Devising a Plan Find a connection between the given information and the unknown that will enable you to calculate the unknown.It often helps yo
17、u to ask yourself explicitly:”How can I relate the given to the unknown?”If you do not see a connection immediately,the following ideas may be helpful in devising a plan.(1)Establish subgoals(divide into subproblems)In a complex problem it is often useful to set subgoals.If we can first reach these
18、subgoals,then we may be able to build on them to reach our final goal.(2)Try to recognize something familiar Relate the given situation to previous knowledge.Look at the unknown and try to recall a more familiar problem that has a similar unknown or involves similar principles.(3)Try to recognize pa
19、tterns Some problems are solved by recognizing that some kind of pattern is occurring.The pattern could be geometric,or numerical,or algebraic.If you can see regularity or repetition in a problem,you might be able to guess what the continuing pattern is and then prove it.This is one reason you need
20、to do lots of problems,so that you develop a base of patterns!(4)Use analogy Try to think of an analogous problem,that is,a similar problem,a related problem,but one that is easier than the original problem.If you can solve the similar,simpler problem,then it might give you the clues you need to sol
21、ve the original,more difficult problem.For instance,if the problem is in three-dimensional geometry,you could look for a similar problem in two-dimensional geometry.Or if the problem you start with is a general one,you could first try a special case.One must do many problems to build a database of a
22、nalogies!常見類比原則 Fewer variables 三維空間幾何題化為二維平面題(5)Introduce something extra It may sometimes be necessary to introduce something new,an auxiliary aid,to help make the connection between the given and the unknown.For instance,in a problem where a diagram is useful the auxiliary aid could be a new line
23、 drawn in a diagram.作補助線作補助線 In a more algebraic problem it could be a new unknown that is related to the original unknown.引進新的變數引進新的變數(6)Take cases We may sometimes have to split a problem into several cases and give a different solution for each of the cases.For instance,we often have to use this
24、strategy in dealing with absolute value.(7)Work backward 倒推法(assume the answer)It is often useful to imagine that your problem is solved and work backward,step by step,until you arrive at the given data.Then you may be able to reverse your steps and thereby construct a solution to the original probl
25、em.This procedure is commonly used in solving equations.For instance,in solving the equation 3x5=7,we suppose that x is a number that satisfies 3x5=7 and work backward.We add 5 to each side of the equation and then divide each side by 3 to get x=4.Since each of these steps can be reversed,we have so
展开阅读全文