高等数学第六版下册第十一章常数项级数审敛法课件.ppt
- 【下载声明】
1. 本站全部试题类文档,若标题没写含答案,则无答案;标题注明含答案的文档,主观题也可能无答案。请谨慎下单,一旦售出,不予退换。
2. 本站全部PPT文档均不含视频和音频,PPT中出现的音频或视频标识(或文字)仅表示流程,实际无音频或视频文件。请谨慎下单,一旦售出,不予退换。
3. 本页资料《高等数学第六版下册第十一章常数项级数审敛法课件.ppt》由用户(三亚风情)主动上传,其收益全归该用户。163文库仅提供信息存储空间,仅对该用户上传内容的表现方式做保护处理,对上传内容本身不做任何修改或编辑。 若此文所含内容侵犯了您的版权或隐私,请立即通知163文库(点击联系客服),我们立即给予删除!
4. 请根据预览情况,自愿下载本文。本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
5. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007及以上版本和PDF阅读器,压缩文件请下载最新的WinRAR软件解压。
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 高等数学 第六 下册 第十一 常数 级数 审敛法 课件
- 资源描述:
-
1、常数项级数审敛法常数项级数审敛法 在研究级数时,中心问题是判定级数的敛散在研究级数时,中心问题是判定级数的敛散性,如果级数是收敛的,就可以对它进行某些性,如果级数是收敛的,就可以对它进行某些运算,并设法求出它的和或和的近似值但是除运算,并设法求出它的和或和的近似值但是除了少数几个特殊的级数,在一般情况下,直接了少数几个特殊的级数,在一般情况下,直接考察级数的部分和是否有极限是很困难的,因考察级数的部分和是否有极限是很困难的,因而直接由定义来判定级数的敛散性往往不可行而直接由定义来判定级数的敛散性往往不可行,这就要借助一些间接的方法来判定级数的敛,这就要借助一些间接的方法来判定级数的敛散性,这些
2、方法称为审敛法散性,这些方法称为审敛法 对常数项级数将分为正项级数和任意项级数对常数项级数将分为正项级数和任意项级数来讨论来讨论一、正项级数及其审敛法一、正项级数及其审敛法1.1.定义定义:,中各项均有中各项均有如果级数如果级数01 nnnuu这种级数称为正项级数这种级数称为正项级数.这种级数非常重要,这种级数非常重要,以后我们将会看到许多级数的敛散性判定问题以后我们将会看到许多级数的敛散性判定问题都可归结为正项级数的收敛性问题都可归结为正项级数的收敛性问题2.2.正项级数收敛的充要条件正项级数收敛的充要条件:nsss21部分和数列部分和数列 为单调增加数列为单调增加数列.ns定理定理.有界有
3、界部分和所成的数列部分和所成的数列正项级数收敛正项级数收敛ns3.比较审敛法比较审敛法均为正项级数,均为正项级数,和和设设 11nnnnvu且且),2,1(nvunn,若若 1nnv收收敛敛,则则 1nnu收收敛敛;反反之之,若若 1nnu发发散散,则则 1nnv发发散散.证明证明 1)1(nnv设设,nnvu nnuuus 21且且nvvv 21即部分和数列有界即部分和数列有界.1收敛收敛 nnu)()2(nsn设设,nnvu 且且nns 则则 不是有界数列不是有界数列.1发散发散 nnv定理证毕定理证毕.推推论论:若若 1nnu收收敛敛(发发散散)且且)(nnnnvkuNnkuv ,比较审
4、敛法的不便比较审敛法的不便:须有参考级数须有参考级数.则则 1nnv收收敛敛(发发散散).例例 1 1 讨讨论论 P P-级级数数 ppppn14131211的的收收敛敛性性.)0(p解解,1 p设设,11nnp.级数发散级数发散则则 P,1 p设设由图可知由图可知 nnppxdxn11pppnns131211 nnppxdxxdx1211oyx)1(1 pxyp1234 npxdx11)11(1111 pnp111 p,有界有界即即ns.级数收敛级数收敛则则 P 发散发散时时当当收敛收敛时时当当级数级数,1,1ppP重要参考级数重要参考级数:几何级数几何级数,P-,P-级数级数,调和级数调和
5、级数.比较审敛法是一基本方法,虽然有比较审敛法是一基本方法,虽然有用,但应用起来却有许多不便,因为它用,但应用起来却有许多不便,因为它需要建立定理所要求的不等式,而这种需要建立定理所要求的不等式,而这种不等式常常不易建立,为此介绍在应用不等式常常不易建立,为此介绍在应用上更为方便的极限形式的比较审敛法上更为方便的极限形式的比较审敛法例例 2 2 证证明明级级数数 1)1(1nnn是是发发散散的的.证明证明,11)1(1 nnn,111 nn发散发散而级数而级数.)1(11 nnn发散发散级数级数4.4.比较审敛法的极限形式比较审敛法的极限形式:设设 1nnu与与 1nnv都是正项级数都是正项级
6、数,如果如果则则(1)(1)当当时时,二级数有相同的敛散性二级数有相同的敛散性;(2)(2)当当时,若时,若收敛收敛,则则收敛收敛;(3)(3)当当时时,若若 1nnv发散发散,则则 1nnu发散发散;,limlvunnn l00 l l 1nnv 1nnu证明证明lvunnn lim)1(由由,02 l 对于对于,N,时时当当Nn 22llvullnn )(232Nnvluvlnnn 即即由比较审敛法的推论由比较审敛法的推论,得证得证.5 5.极极限限审审敛敛法法:设设 1nnu为为正正项项级级数数,如果如果0lim lnunn (或或 nnnulim),),则级数则级数 1nnu发散发散;
7、如如果果有有1 p,使使得得npnun lim存存在在,则则级级数数 1nnu收收敛敛.例例 3 3 判判定定下下列列级级数数的的敛敛散散性性:(1)11sinnn;(2)131nnn;解解nnn1sinlim nnn11sinlim ,1 原级数发散原级数发散.)2(nnnn3131lim nnn311lim ,1,311收敛收敛 nn故原级数收敛故原级数收敛.)1(6 6.比比值值审审敛敛法法(达达朗朗贝贝尔尔 D DA Al le em mb be er rt t 判判别别法法):设设 1nnu是是正正项项级级数数,如如果果)(lim1 数数或或nnnuu 则则1 时时级级数数收收敛敛;
8、1 时时级级数数发发散散;1 时时失失效效.证明证明,为为有有限限数数时时当当,0 对对,N,时时当当Nn ,1 nnuu有)(1Nnuunn 即即,1时时当当 ,1 取取,1 r使使,12 NNruu,1223 NNNurruu,11 NmmNuru,111 mNmur收敛收敛而级数而级数,11收敛收敛 NnummNuu收敛收敛,1时时当当 ,1 取取,1 r使使,时时当当Nn ,1nnnuruu .0lim nnu发散发散比值审敛法的优点比值审敛法的优点:不必找参考级数不必找参考级数.直接从级数本直接从级数本身的构成身的构成即通项来判定其即通项来判定其敛散性敛散性 两点注意两点注意:1 1
9、.当当1 时时比比值值审审敛敛法法失失效效;,11发发散散级级数数例例 nn,112收收敛敛级级数数 nn)1(2 2.条条件件是是充充分分的的,而而非非必必要要.,232)1(2nnnnnvu 例例,2)1(211收敛收敛级数级数 nnnnnu,)1(2(2)1(211nnnnnauu 但但,61lim2 nna,23lim12 nna.limlim1不存在不存在nnnnnauu 例例 4 4 判判别别下下列列级级数数的的收收敛敛性性:(1)1!1nn;(2)110!nnn;(3)12)12(1nnn.解解)1(11 n),(0 n.!11收敛收敛故级数故级数 nn!1)!1(11nnuun
10、n )2(!1010)!1(11nnuunnnn 101 n),(n.10!1发散发散故级数故级数 nnn)3()22()12(2)12(limlim1 nnnnuunnnn,1 比值审敛法失效比值审敛法失效,改用比较审敛法改用比较审敛法,12)12(12nnn ,112收敛收敛级数级数 nn.)12(211收敛收敛故级数故级数 nnn例例5 126sin3nnnn 解解由于由于nnnuu1lim 不存在,检比法失效不存在,检比法失效 而而nnnnn36sin32 对对 13nnn由检比法得由检比法得 13nnn收敛收敛故由比较审敛法知故由比较审敛法知 126sin3nnnn 收敛收敛例例6n
展开阅读全文