高等数学(简明版)(第四版)第四节-高阶导数-PPT课件.ppt
- 【下载声明】
1. 本站全部试题类文档,若标题没写含答案,则无答案;标题注明含答案的文档,主观题也可能无答案。请谨慎下单,一旦售出,不予退换。
2. 本站全部PPT文档均不含视频和音频,PPT中出现的音频或视频标识(或文字)仅表示流程,实际无音频或视频文件。请谨慎下单,一旦售出,不予退换。
3. 本页资料《高等数学(简明版)(第四版)第四节-高阶导数-PPT课件.ppt》由用户(三亚风情)主动上传,其收益全归该用户。163文库仅提供信息存储空间,仅对该用户上传内容的表现方式做保护处理,对上传内容本身不做任何修改或编辑。 若此文所含内容侵犯了您的版权或隐私,请立即通知163文库(点击联系客服),我们立即给予删除!
4. 请根据预览情况,自愿下载本文。本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
5. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007及以上版本和PDF阅读器,压缩文件请下载最新的WinRAR软件解压。
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 高等数学 简明 第四 导数 PPT 课件
- 资源描述:
-
1、4 高阶导数高阶导数一、高阶导数一、高阶导数二、多元函数的偏导数二、多元函数的偏导数第三章第三章 微分学微分学三、高阶偏导数三、高阶偏导数四、四、拓展与思考拓展与思考五、小结五、小结一、高阶导数一、高阶导数.)()()(的的二二阶阶导导数数就就得得到到函函数数可可导导如如果果的的导导函函数数再再求求一一次次导导数数对对函函数数xfxfxf 定义一定义一.)(0处处的的一一个个邻邻域域内内有有定定义义在在点点设设导导函函数数xxf,)()(lim000存存在在如如果果xxfxxfx ,)(0处处的的二二阶阶导导数数在在点点则则称称此此极极限限为为函函数数xxfy .dd),(),(02200 x
2、xyxyxf或或记作记作 分分别别记记为为阶阶导导数数四四阶阶类类似似地地可可定定义义三三阶阶,n)()4(,nyyy 分分别别记记为为阶阶导导数数四四阶阶类类似似地地可可定定义义三三阶阶,n.dd,dd,dd4433nnxyxyxy或或分分别别记记为为.,为为一一阶阶导导数数称称而而把把为为高高阶阶导导数数二二阶阶及及二二阶阶以以上上导导数数称称y 例例.,.12)4(3yyyyxxy 求求设设解解,262 xy,12xy ,12 y.0)4(y例例2 2).0(),0(.arctanyyxy 求求设设解解,112xy ,)1(222xxy .)1()13(2322xxy 得得代代入入以以上
3、上各各式式将将,0 x.2)0(,0)0(yy例例3 3.e)(nxyy求求设设 解解.e)(xny 显显然然有有例例4 4.).1ln()(nyxy求求设设 解解,)1(111 xxy,)1)(1(2 xy,)1)(2)(1(3 xynnxny )1)(1()2)(1()(.)1()!1()1(1nnxn 例例5 5.sin)(nyxy求求设设 解解).2sin(cosxxy ).22sin()2cos(xxy ).23sin()22cos(xxy ).2sin()(xnyn 二、多元函数的偏导数二、多元函数的偏导数定义二定义二如果如果有定义有定义的一个邻域内的一个邻域内在点在点设函数设函数
4、 .),(),(00yxPyxfz ,),(),(lim00000存在存在xyxfyxxfx 记记作作的的偏偏导导数数对对处处在在点点则则称称此此极极限限为为函函数数,),(),(00 xyxPyxfy .),(),(0000yxxxzyxz 或或的偏导数的偏导数可以定义对可以定义对同样同样y,),(00yxyz.),(),(lim00000yyxfyyxfy .,元函数元函数四元四元推广到三元推广到三元上述偏导数的定义可以上述偏导数的定义可以n:),(121的的偏偏导导数数是是指指对对元元函函数数如如xxxxfznn 1xz1212110),(),(lim1xxxxfxxxxfnnx ).(
5、如果上述极限存在如果上述极限存在.其余可以类推其余可以类推注意注意xzyzxz 与与理理解解为为不不能能把把偏偏导导数数的的记记号号,.之之商商与与或或yz .的记号的记号它仅仅是一种不可分开它仅仅是一种不可分开.,求求导导法法则则的的求求偏偏导导数数用用不不着着建建立立新新根根据据偏偏导导数数的的定定义义.量量求求偏偏导导数数只只需需注注意意是是对对哪哪一一个个变变例例6 6.)4,1(sin处处的的两两个个偏偏导导数数在在点点求求函函数数 yxz 解解,sin yxz ,22sin)4,1()4,1(yxz则则,cos yxyz .22cos)4,1()4,1(yxyz则则例例7 7.,y
展开阅读全文