高考必考数学重点公式.doc
- 【下载声明】
1. 本站全部试题类文档,若标题没写含答案,则无答案;标题注明含答案的文档,主观题也可能无答案。请谨慎下单,一旦售出,不予退换。
2. 本站全部PPT文档均不含视频和音频,PPT中出现的音频或视频标识(或文字)仅表示流程,实际无音频或视频文件。请谨慎下单,一旦售出,不予退换。
3. 本页资料《高考必考数学重点公式.doc》由用户(四川三人行教育)主动上传,其收益全归该用户。163文库仅提供信息存储空间,仅对该用户上传内容的表现方式做保护处理,对上传内容本身不做任何修改或编辑。 若此文所含内容侵犯了您的版权或隐私,请立即通知163文库(点击联系客服),我们立即给予删除!
4. 请根据预览情况,自愿下载本文。本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
5. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007及以上版本和PDF阅读器,压缩文件请下载最新的WinRAR软件解压。
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 高考 必考 数学 重点 公式 下载 _其它资料_高考专区_数学_高中
- 资源描述:
-
1、高考必考数学重点公式高中数学基本公式大全有了此书,高分无忧!一、基本公式(必考公式) 1、抛物线:y = ax *+ bx + c (1)就是y等于ax 的平方加上 bx再加上 c (2)a 0时开口向上 ,a 0 3、椭圆周长计算公式 (1)椭圆周长公式:L=2b+4(a-b) (2)椭圆周长定理:椭圆的周长等于该椭圆短半轴长为半径的圆周长(2b)加上四倍的该椭圆长半轴长(a)与短半轴长(b)的差。 (3)椭圆面积计算公式 : 椭圆面积公式: S=ab 椭圆面积定理:椭圆的面积等于圆周率()乘该椭圆长半轴长(a)与短半轴长(b)的乘积。 以上椭圆周长、面积公式中虽然没有出现椭圆周率T,但这两
2、个公式都是通过椭圆周率T推导演变而来。常数为体,公式为用。 椭圆形物体 体积计算公式椭圆 的 长半径*短半径*PAI*高 4、三角函数: (1)两角和公式 sin(A+B)=sinAcosB+cosAsinB sin(A-B)=sinAcosB-sinBcosA cos(A+B)=cosAcosB-sinAsinB cos(A-B)=cosAcosB+sinAsinB tan(A+B)=(tanA+tanB)/(1-tanAtanB) tan(A-B)=(tanA-tanB)/(1+tanAtanB) cot(A+B)=(cotAcotB-1)/(cotB+cotA) cot(A-B)=(co
3、tAcotB+1)/(cotB-cotA) (2)倍角公式 tan2A=2tanA/(1-tan2A) cot2A=(cot2A-1)/2cota cos2a=cos2a-sin2a=2cos2a-1=1-2sin2a sin+sin(+2/n)+sin(+2*2/n)+sin(+2*3/n)+sin+2*(n-1)/n=0 cos+cos(+2/n)+cos(+2*2/n)+cos(+2*3/n)+cos+2*(n-1)/n=0 以及 sin2()+sin2(-2/3)+sin2(+2/3)=3/2 tanAtanBtan(A+B)+tanA+tanB-tan(A+B)=0 (3)半角公式
4、sin(A/2)=(1-cosA)/2) sin(A/2)=-(1-cosA)/2) cos(A/2)=(1+cosA)/2) cos(A/2)=-(1+cosA)/2) tan(A/2)=(1-cosA)/(1+cosA) tan(A/2)=-(1-cosA)/(1+cosA) cot(A/2)=(1+cosA)/(1-cosA) cot(A/2)=-(1+cosA)/(1-cosA) (4)和差化积 2sinAcosB=sin(A+B)+sin(A-B) 2cosAsinB=sin(A+B)-sin(A-B) 2cosAcosB=cos(A+B)-sin(A-B) -2sinAsinB=c
5、os(A+B)-cos(A-B) sinA+sinB=2sin(A+B)/2)cos(A-B)/2 cosA+cosB=2cos(A+B)/2)sin(A-B)/2) tanA+tanB=sin(A+B)/cosAcosB tanA-tanB=sin(A-B)/cosAcosB cotA+cotBsin(A+B)/sinAsinB -cotA+cotBsin(A+B)/sinAsinB (5)某些数列前n项和 1+2+3+4+5+6+7+8+9+n=n(n+1)/2 1+3+5+7+9+11+13+15+(2n-1)=n2 2+4+6+8+10+12+14+(2n)=n(n+1) 12+22+
6、32+42+52+62+72+82+n2=n(n+1)(2n+1)/6 13+23+33+43+53+63+n3=(n(n+1)/2)2 1*2+2*3+3*4+4*5+5*6+6*7+n(n+1)=n(n+1)(n+2)/3 (6)正弦定理 a/sinA=b/sinB=c/sinC=2R 注: 其中 R 表示三角形的外接圆半径 (7)余弦定理 b2=a2+c2-2accosB 注:角B是边a和边c的夹角 (8)乘法与因式分 a2-b2=(a+b)(a-b) a3+b3=(a+b)(a2-ab+b2) a3-b3=(a-b(a2+ab+b2) (9)三角不等式 |a+b|a|+|b| |a-b
7、|a|+|b| |a|b-bab |a-b|a|-|b| -|a|a|a| 5、一元二次方程(1)一元二次方程的解-b+(b2-4ac)/2a -b-(b2-4ac)/2a (2)根与系数的关系 x1+x2=-b/a x1*x2=c/a 注:韦达定理 (3)判别式 b2-4a=0 注:方程有相等的两实根 , b2-4ac0 注:方程有两个不相等的个实根 ,b2-4ac0 3、抛物线标准方程 y2=2px y2=-2px x2=2py x2=-2py 4、直棱柱侧面积 S=c*h 斜棱柱侧面积 S=c*h 5、正棱锥侧面积 S=1/2c*h 正棱台侧面积 S=1/2(c+c)h 6、圆台侧面积
8、S=1/2(c+c)l=pi(R+r)l 球的表面积 S=4pi*r2 7、圆柱侧面积 S=c*h=2pi*h 圆锥侧面积 S=1/2*c*l=pi*r*l 8、弧长公式 l=a*r a是圆心角的弧度数r 0 扇形面积公式 s=1/2*l*r 9、锥体体积公式 V=1/3*S*H 圆锥体体积公式 V=1/3*pi*r2h 10、斜棱柱体积 V=SL 注:其中,S是直截面面积, L是侧棱长 11、柱体体积公式 V=s*h 圆柱体 V=pi*r2h 12、图形周长 面积 体积公式 13、长方形的周长=(长+宽)2 14、正方形的周长=边长4 15、长方形的面积=长宽 16、正方形的面积=边长边长
9、17、三角形的面积 已知三角形底a,高h,则Sah/2 已知三角形三边a,b,c,半周长p,则S p(p - a)(p - b)(p - c) (海伦公式)(p=(a+b+c)/2) 和:(a+b+c)*(a+b-c)*1/4 已知三角形两边a,b,这两边夹角C,则SabsinC/2 设三角形三边分别为a、b、c,内切圆半径为r 则三角形面积=(a+b+c)r/2 设三角形三边分别为a、b、c,外接圆半径为r 则三角形面积=abc/4r 已知三角形三边a、b、c,则S 1/4c2a2-(c2+a2-b2)/2)2 (“三斜求积” 南宋秦九韶) 18、 | a b 1 | S=1/2 * | c
10、 d 1 | | e f 1 | 【| a b 1 | | c d 1 | 为三阶行列式,此三角形ABC在平面直角坐标系内A(a,b),B(c,d), C(e,f),这里ABC | e f 1 | 选区取最好按逆时针顺序从右上角开始取,因为这样取得出的结果一般都为正值,如果不按这个规则取,可能会得到负值,但不要紧,只要取绝对值就可以了,不会影响三角形面积的大小!】 19、秦九韶三角形中线面积公式: S=(Ma+Mb+Mc)*(Mb+Mc-Ma)*(Mc+Ma-Mb)*(Ma+Mb-Mc)/3 其中Ma,Mb,Mc为三角形的中线长. 20、 平行四边形的面积=底高 21、梯形的面积=(上底+下底
11、)高2 22、直径=半径2 半径=直径2 23、圆的周长=圆周率直径= 24、圆周率半径2 25、圆的面积=圆周率半径半径 26、长方体的表面积= (长宽+长高宽高)2 27、长方体的体积 =长宽高 28、正方体的表面积=棱长棱长6 29、正方体的体积=棱长棱长棱长 30、圆柱的侧面积=底面圆的周长高 31、圆柱的表面积=上下底面面积+侧面积 32、圆柱的体积=底面积高 33、圆锥的体积=底面积高3 34、长方体(正方体、圆柱体)的体积=底面积高 三、平面图形 名称 符号 周长C和面积S 正方形 a边长 C4a Sa2 长方形 a和b边长 C2(a+b) Sab 三角形 a,b,c三边长 ha
12、边上的高 s周长的一半 A,B,C内角 其中s(a+b+c)/2 Sah/2 ab/2?sinC s(s-a)(s-b)(s-c)1/2 a2sinBsinC/(2sinA) 1 过两点有且只有一条直线 2 两点之间线段最短 3 同角或等角的补角相等 4 同角或等角的余角相等 5 过一点有且只有一条直线和已知直线垂直 6 直线外一点与直线上各点连接的所有线段中,垂线段最短 7 平行公理 经过直线外一点,有且只有一条直线与这条直线平行 8 如果两条直线都和第三条直线平行,这两条直线也互相平行 9 同位角相等,两直线平行 10 内错角相等,两直线平行 11 同旁内角互补,两直线平行 12两直线平行
13、,同位角相等 13 两直线平行,内错角相等 14 两直线平行,同旁内角互补 15 定理 三角形两边的和大于第三边 16 推论 三角形两边的差小于第三边 17 三角形内角和定理 三角形三个内角的和等于180 18 推论1 直角三角形的两个锐角互余 19 推论2 三角形的一个外角等于和它不相邻的两个内角的和 20 推论3 三角形的一个外角大于任何一个和它不相邻的内角 21 全等三角形的对应边、对应角相等 22边角边公理(sas) 有两边和它们的夹角对应相等的两个三角形全等 23 角边角公理( asa)有两角和它们的夹边对应相等的两个三角形全等 24 推论(aas) 有两角和其中一角的对边对应相等的
展开阅读全文