II范希尔的几何思维水平理论精编版课件.ppt
- 【下载声明】
1. 本站全部试题类文档,若标题没写含答案,则无答案;标题注明含答案的文档,主观题也可能无答案。请谨慎下单,一旦售出,不予退换。
2. 本站全部PPT文档均不含视频和音频,PPT中出现的音频或视频标识(或文字)仅表示流程,实际无音频或视频文件。请谨慎下单,一旦售出,不予退换。
3. 本页资料《II范希尔的几何思维水平理论精编版课件.ppt》由用户(三亚风情)主动上传,其收益全归该用户。163文库仅提供信息存储空间,仅对该用户上传内容的表现方式做保护处理,对上传内容本身不做任何修改或编辑。 若此文所含内容侵犯了您的版权或隐私,请立即通知163文库(点击联系客服),我们立即给予删除!
4. 请根据预览情况,自愿下载本文。本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
5. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007及以上版本和PDF阅读器,压缩文件请下载最新的WinRAR软件解压。
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- II 希尔 几何 思维 水平 理论 精编 课件
- 资源描述:
-
1、II.范希尔的几何思维水平起因 在在50年代的荷兰,几何教学所面临的问题是年代的荷兰,几何教学所面临的问题是很普遍的(很普遍的(Freudenthal,1958)。范希尔夫妇()。范希尔夫妇(Pierre Van Hiele&Dina Van Hiele)作为荷兰)作为荷兰一所中学的数学教师,每天都亲身经历着这些问一所中学的数学教师,每天都亲身经历着这些问题。最让他们感到困惑的是教材所呈现的问题或题。最让他们感到困惑的是教材所呈现的问题或作业所需要的语言及专业知识常常超出了学生的作业所需要的语言及专业知识常常超出了学生的思维水平,这使得他们开始关注皮亚杰的工作。思维水平,这使得他们开始关注皮亚
2、杰的工作。经过一段时间的研究,他们提出了几何思维的五经过一段时间的研究,他们提出了几何思维的五个水平。这一成果最初发表在他们夫妇于个水平。这一成果最初发表在他们夫妇于1957年年在乌特勒克大学共同完成的的博士论文上。在乌特勒克大学共同完成的的博士论文上。评价前苏联学者很快就注意到了范希尔的思想,他的论文前苏联学者很快就注意到了范希尔的思想,他的论文(1959)在)在1963年就由皮什卡罗(年就由皮什卡罗(A.M.Pyshkalo)作了详)作了详尽的报道。尽的报道。10年之后,美国人才开始了解范希尔的工作。在年之后,美国人才开始了解范希尔的工作。在1974年召开的大西洋城年召开的大西洋城NCTM
3、年会上,芝加哥大学的威兹普年会上,芝加哥大学的威兹普(Isaak Wirszup)将范希尔的思想正式介绍给了美国学者,)将范希尔的思想正式介绍给了美国学者,并同时介绍了前苏联几何教学的并同时介绍了前苏联几何教学的“惊人进展惊人进展”。威兹普的报。威兹普的报告后来以告后来以“几何教学心理学中的一个重大突破几何教学心理学中的一个重大突破”为标题发表为标题发表在在Martin 和和Bradbard主编的著作上(主编的著作上(Wirszup,1976)。)。与此与此同时,弗赖登塔尔也提供了思维水平在数学归纳法学习同时,弗赖登塔尔也提供了思维水平在数学归纳法学习中的范例。他发现,数学归纳实际上也是沿着五
4、个思维水平中的范例。他发现,数学归纳实际上也是沿着五个思维水平发展的(发展的(Freudenthal,1973,p123)。所有这一些,使范希)。所有这一些,使范希尔理论尔理论引起了全世界的广泛关注,并成为上世纪引起了全世界的广泛关注,并成为上世纪80年代几何年代几何教学研究的一个热点。教学研究的一个热点。水平的划分层次层次0视觉视觉(visuality)层次层次1分析分析(analysis)层次层次2非形式化的演绎非形式化的演绎(informal deduction)层次层次3形式的演绎形式的演绎(formal deduction)层次层次4严密性严密性(rigior)层次0视觉(visua
5、lity)儿童能通过整体轮廓辨认图形,并能操作其几何构图元素(如边、角);能画图或仿画图形,使用标准或不标准名称描述几何图形;能根据对形状的操作解决几何问题,但无法使用图形之特征或要素名称分析图形,也无法对图形做概括的论述.如:儿童可能会某个图形是三角形,因为它看起像一个三明治。层次1分析(analysis)儿童能分析图形的组成要素及特征,并依此建立图形的特性,利用这些特性解决几何问题,但无法解释性质间的关系,也无法了解图形的定义;能根据组成要素比较两个形体,利用某一性质做图形分类,但无法解释图形某些性质之间的关联,也无法导出公式和使用正式的定义。如:儿童会知道三角形有三条边和三个角,但能解如
6、果内角愈大,则对边愈长的性质。层次2非形式化的演绎(informal deduction)儿童能建立图形及图形性质之间的关系,可以提出非形式化的推论,了解建构图形的要素,能进一步探求图形的内在属性和其包含关系,使用公式与定义及发现的性质做演绎推论。但不能了解证明与定理的重要性,不能由不熟悉的前提去建立证明结果的成立,也未能建立定理网络之间的内在关系。如:学生解了等腰三角形的性质后,他们会推出等腰直角三角形同时也是直角三角形的一种,因为等腰直角三角形较直角三角形多一些性质的限制。因此,学童能作一些非正式的说明但还能作系统性的证明.层次3形式的演绎 学生可以了解到证明的重要性和了解“不定义元素”、
展开阅读全文