书签 分享 收藏 举报 版权申诉 / 31
上传文档赚钱

类型《三角函数的概念》三角函数PPT课件-.pptx

  • 上传人(卖家):三亚风情
  • 文档编号:3367854
  • 上传时间:2022-08-24
  • 格式:PPTX
  • 页数:31
  • 大小:2.85MB
  • 【下载声明】
    1. 本站全部试题类文档,若标题没写含答案,则无答案;标题注明含答案的文档,主观题也可能无答案。请谨慎下单,一旦售出,不予退换。
    2. 本站全部PPT文档均不含视频和音频,PPT中出现的音频或视频标识(或文字)仅表示流程,实际无音频或视频文件。请谨慎下单,一旦售出,不予退换。
    3. 本页资料《《三角函数的概念》三角函数PPT课件-.pptx》由用户(三亚风情)主动上传,其收益全归该用户。163文库仅提供信息存储空间,仅对该用户上传内容的表现方式做保护处理,对上传内容本身不做任何修改或编辑。 若此文所含内容侵犯了您的版权或隐私,请立即通知163文库(点击联系客服),我们立即给予删除!
    4. 请根据预览情况,自愿下载本文。本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
    5. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007及以上版本和PDF阅读器,压缩文件请下载最新的WinRAR软件解压。
    配套讲稿:

    如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。

    特殊限制:

    部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。

    关 键  词:
    三角函数的概念 三角函数 概念 PPT 课件
    资源描述:

    1、-1-三角函数三角函数首页课前篇自主预习一二三一、三角函数的定义1.在直角坐标系中,称以原点O为圆心,以单位长度为半径的圆为单位圆.如图,如果一个锐角的终边与单位圆的交点是P(x,y),根据初中所学在直角三角形中正弦、余弦、正切的定义,你能否用点P的坐标表示sin,cos,tan?这一结论能否推广到是任意角时的情形呢?课前篇自主预习一二三提示:sin=y,cos=x,tan=.这一结论可以推广到是任意角.课前篇自主预习一二三2.填空如图,是任意角,以的顶点O为坐标原点,以的始边为x轴的正半轴,建立平面直角坐标系.设P(x,y)是的终边与单位圆的交点.(1)把点P的纵坐标y叫做的正弦函数,记作s

    2、in,即y=sin;(2)把点P的横坐标x叫做的余弦函数,记作cos,即x=cos;(3)把点P的纵坐标与横坐标的比值 叫做的正切,记作tan,即=tan(x0).正弦、余弦、正切都是以角为自变量,以单位圆上点的坐标或坐标的比值为函数值的函数,我们将它们统称为三角函数.3.填空课前篇自主预习一二三答案:B(2)如果在角的终边上有一点M(3,4),那么如何求角的三个三角函数值?课前篇自主预习一二三5.如果角的终边落在y轴上,这时其终边与单位圆的交点坐标是什么?sin,cos,tan 的值是否还存在?提示:终边与单位圆的交点坐标是(0,1)或(0,-1),这时tan 的值不存在,因为分母不能为零,

    3、但sin,cos 的值仍然存在.6.填空三角函数的定义域如下表所示.课前篇自主预习一二三二、三角函数值的符号1.根据三角函数的定义,各个三角函数值是用单位圆上点的坐标表示的,当角在不同象限时,其与单位圆的交点坐标的符号就不同,因此其各个三角函数值的正负就不同,你能推导出sin,cos,tan 在不同象限内的符号吗?提示:当在第一象限时,sin 0,cos 0,tan 0;当在第二象限时,sin 0,cos 0,tan 0;当在第三象限时,sin 0,cos 0;当在第四象限时,sin 0,tan 0.2.sin,cos,tan 在各个象限的符号如下:记忆口诀:“一全正,二正弦,三正切,四余弦”

    4、.课前篇自主预习一二三3.做一做判断下列各三角函数值的符号:课前篇自主预习一二三三、诱导公式一1.30,390,-330三个角的终边有什么关系?它们与单位圆的交点坐标相同吗?这三个角的正弦值、余弦值、正切值相等吗?提示:终边相同,与单位圆的交点坐标相同,三个角的正弦值、余弦值、正切值相等.2.填空诱导公式一(1)语言表示:终边相同的角的同一三角函数的值相等.课前篇自主预习一二三课堂篇探究学习探究一探究二探究三思维辨析随堂演练利用三角函数的定义求三角函数值利用三角函数的定义求三角函数值例例1求解下列各题:(3)已知角的始边与x轴的非负半轴重合,终边在射线4x-3y=0(x0)上,则cos-sin

    5、=.分析:(1)先求出x的值,再计算;(2)利用三角函数的定义的推广求解;(3)先在终边上取点,再利用定义求解.课堂篇探究学习探究一探究二探究三思维辨析随堂演练课堂篇探究学习探究一探究二探究三思维辨析随堂演练课堂篇探究学习探究一探究二探究三思维辨析随堂演练课堂篇探究学习探究一探究二探究三思维辨析随堂演练反思感悟反思感悟 利用三角函数的定义求一个角的三角函数值有以下几种情况:(1)若已知角,则只需确定出该角的终边与单位圆的交点坐标,即可求出各三角函数值.(4)若已知角终边上点的坐标含参数,则需进行分类讨论.课堂篇探究学习探究一探究二探究三思维辨析随堂演练判断三角函数值的符号判断三角函数值的符号A

    6、.第一象限角B.第二象限角C.第三象限角D.第四象限角(2)判断下列各式的符号:分析:(1)由已知条件确定出sin,cos 的符号即可确定角的象限;(2)先判断每个因式的符号,再确定积的符号.课堂篇探究学习探究一探究二探究三思维辨析随堂演练(1)解析:由sin tan 0,cos 2300.于是sin 105cos 2300,tan 0,则实数a的取值范围是()A.(-2,3B.(-2,3)C.-2,3)D.-2,3解析:由cos 0,sin 0可知,角的终边在第二象限或y轴的正半轴上,所以有答案:A课堂篇探究学习探究一探究二探究三思维辨析随堂演练诱导公式一的应用诱导公式一的应用例例3求下列各

    7、式的值:(1)a2sin(-1 350)+b2tan 405-(a-b)2tan 765-2abcos(-1 080);分析:将角转化为k360+(kZ)或2k+(kZ)的形式,利用公式一求值,注意熟记特殊角的三角函数值.解:(1)原式=a2sin(-4360+90)+b2tan(360+45)-(a-b)2tan(2360+45)-2abcos(-3360)=a2sin 90+b2tan 45-(a-b)2tan 45-2abcos 0=a2+b2-(a-b)2-2ab=0.课堂篇探究学习探究一探究二探究三思维辨析随堂演练反思感悟反思感悟 诱导公式一的应用策略:(1)诱导公式一可以统一写成f

    8、(k360+)=f()或f(k2+)=f()(kZ)的形式,它的实质是终边相同的角的同一三角函数值相等;(2)利用它可把任意角的三角函数值转化为02角的三角函数值,即可把负角的三角函数转化为0到2间角的三角函数,亦可把大于2的角的三角函数转化为0到2间角的三角函数,即把角实现大化小,负化正的转化.课堂篇探究学习探究一探究二探究三思维辨析随堂演练课堂篇探究学习探究一探究二探究三思维辨析随堂演练忽视对参数的分类讨论致误典例典例 角的终边过点P(-3a,4a),a0,则cos=.错解错在什么地方?你能发现吗?怎样避免这类错误呢?提示:错解中,误以为a0,没有对a的正负进行分类讨论,导致r求错,从而结

    9、果错误.课堂篇探究学习探究一探究二探究三思维辨析随堂演练防范措施 在利用三角函数的定义解决问题时,如果终边上一点的坐标中含有参数,那么要注意对其进行分类讨论,以免丢解.课堂篇探究学习探究一探究二探究三思维辨析随堂演练变式训练变式训练已知角的终边在直线y=x上,则sin=_.解析:易知角的终边在第一象限或第三象限,当角的终边在第一象限时,在角的终边上取一点P(1,1),课堂篇探究学习探究一探究二探究三思维辨析随堂演练答案:D 课堂篇探究学习探究一探究二探究三思维辨析随堂演练答案:A 3.若tan sin20,则角在()A.第一象限B.第二象限C.第二象限或第四象限D.第二象限或第三象限解析:因为

    10、tan sin20,所以tan 0,于是角在第二象限或第四象限.答案:C课堂篇探究学习探究一探究二探究三思维辨析随堂演练课堂篇探究学习探究一探究二探究三思维辨析随堂演练有时候,人太清醒反而觉得累,觉得不快乐,但是想要学会装糊涂还真是难。不要等到人生垂暮,才想起俯拾朝花,且行且珍惜。你可能在一个人面前一文不值,却在另一个人面前是无价之宝。谨记自己的价值所在。路再远,也有尽头;苦再深,也会结束,只要不放弃,就有希望。只是,在漫漫的长途中跋涉,在深深的痛苦中挣扎,我们常常为环境所迫,被困难所迷惑,放弃了希望,厌倦了生活,觉得路越走越窄,苦越来越深。其实,窄的不是路,是思想与感情,深的不是苦,是感受与

    11、心情,路边是路,苦中有甜,看得是你自己。许多人,不是擦肩,就是错过,总是无缘;许多事,不是无能,就是无情,总是无缘。人生,就是一次艰辛的旅行,得意时,顿生许多豪情,期盼着,浏览更多美好的风景;失意时,凭添许多伤心,渴望着,走出困境摆脱愁情。人生所有的一切,得意也好,失意也罢,圆满很少,完美不多,人如此,事这样,如意很少。人生,有许多无奈,好多人或事,明明喜欢,偏偏不能;明明热爱,恰恰不能;生活,有许多无能,好多事情,明明讨厌,常常不做不行;明明厌倦,往往不做不成。想做的不能,想说的不行;不愿做的,却又不能,不想说的,就是不行。我们就是这样无奈,无能。何时,能随心如愿,给心身最大的自由,那该多好

    12、。这个世界有两件事我们不能不做:一是赶路,二是停下来看看自己是否拥有一份好心态。好心态是人们一生中的好伴侣,让人愉悦和健康。人生感悟:要有阳光般的心态。没有爱的生活就像一片荒漠,赠人玫瑰,手有余香“学会爱别人,其实就是爱自己”,让爱如同午后阳光,温暖每个人的心房。人生感悟:学会爱别人多去尊重理解别人,常怀宽容和感激之心,宽容是一种美德,是一种智慧,海纳百川才有了海的广阔,感激你的朋友,是他们给了你帮助:感激你的敌人,是让你变得坚强。人生感悟:懂得宽容和感恩。管好自己的嘴,讲话不要只顾一时痛快信口开河,“良言一句三冬暖,伤人一语六月寒”说话要用脑子。不扬人恶,自然能化敌为友。人生感悟:切记祸从口

    13、出!人情、人情,人之常情,要乐善好施,常与交往,“平时多烧香,急时有人帮”,所以,“人情要多储存,就像银行存款,存的越多,时间越长,红利就越大。人生感悟:多储存人情。遇事不要急躁!不要急于下结论特别是生气的时候做决断,要学会换位思考,或者等一等,大事化小,小事化了。把复杂的事情尽量简单处理,千万不要把简单的事情复杂化。人生感悟:遇事莫急躁!真正学会知足。人生最大的烦恼是从没有意义的比较开始,大千世界总有比如你的和比你强的人,“当我哭泣没鞋穿的时候,我发现有人却没脚”。人生感悟:真正学会知足。如果敌人让你生气,那说明你还有胜他的把握,根本不必回头去看咒骂你的人是谁。如果有一条疯狗咬你一口,难道你

    14、也要趴下去反咬它一口吗?人生感悟:不和小人生气计较。别把工作当负担,既然目前改不了行,也没有更好的选择,与其生气埋怨,不如积极快乐的去面对。当你把工作当做生活和艺术时,你就会享受到生活的乐趣。人生感悟:享受工作的快乐。人活着一天就是福气,就该珍惜,人生短短几十年,不要给自己留下更多的遗憾。日出东海落西山,愁也一天,喜也一天;遇事不钻牛角尖,人也舒坦,心也舒坦。人生感悟:珍惜自己的生活。1.人生就像蒲公英,看似自由,却往往身不由己。生活没有如果,只有结果,自己尽力了,努力了,就好。有的人像WIFI热点,即使远了,但是只要你没改密码,再相见的时候也会自动连上,只是改不改密码,也是人家的事了。要么敢

    15、爱敢恨快意人生,要么没心每肺扮傻到底,别让自己活成了那种,懂得很多道理却过不好这一生的人。成大事的人,往往做小事也认真,而做小事不认真的人,往往也做不成大事。看别人不顺眼,其实是自已的修养不够。人生在世,顺少逆多,一辈子不容易,千万不要总是跟别人过不去,更不要跟自已过不去。如果是一堆苹果,有好有坏,你就应该先吃好的,把坏的扔掉,如果你先吃坏的,好的也会变坏,你将永远吃不到好的,人生亦如此。人,总爱跟别人比较,看看有谁比自己好,又有谁比不上自己。而其实,为你的烦恼和忧伤垫底的,从来不是别人的不幸和痛苦,而是你自己的态度。学习中经常取得成功可能会导致更大的学习兴趣,并改善学生作为学习的自我概念。为

    16、了成功地生活,少年人必须学习自立,铲除埋伏各处的障碍,在家庭要教养他,使他具有为人所认可的独立人格。劳动教养了身体,学习教养了心灵我们的事业就是学习再学习,努力积累更多的知识,因为有了知识,社会就会有长足的进步,人类的励志语录未来幸福就在于此。青年是整个社会力量中的一部分最积极最有生气的力量。他们最肯学习,最少保守思想,在社会主义时代尤其是这样。必须记住我们学习的时间有限的。时间有限,不只由于人生短促,更由于人事纷繁。在学习上做一眼勤手勤脑勤,就可以成为有学问的人。聪明在于学习,天才在于积累。所谓天才,实际上是依靠学习。天才不能使人不必工作,不能代替劳动。要发展天才,必须长时间地学习和高度紧张

    17、地工作。人越有天才,他面临的任务也就越复杂,越重要。诺夫对所学知识内容的兴趣可能成为学习动机。12、要建设,就必须有知识,必须掌握科学。而要有知识,就必须学习,顽强地耐心地学习。向所有的人学习,不论向敌人或朋友都要学习,特别是向敌人学习。学习专看文学书,也是不好的。先前的文学青年,往往厌恶数学理化史地生物学,以为这些都无足轻重,后来变成连常识也没有。只有让学生不把全部时间都用在学习上,而留下许多自由支配的时间,他才能顺利地学习,这是教育过程的逻辑。游手好闲地学习,并不比学习游手好闲好。学习的敌人是自己的满足,要认真学习一点东西,必须从不自满开始。对自己,“学而不厌”,对人家,“诲人不倦”,我们应取这种态度。钢是在烈火和急剧冷却里锻炼出来的,所以才能坚硬和什么也不怕。我们的一代也是这样的在斗争中和可怕的考验中锻炼出来的,学习了不在生活面前屈服。读和写是学生最必要的两种学习方法,也是通向周围世界的两扇窗口。

    展开阅读全文
    提示  163文库所有资源均是用户自行上传分享,仅供网友学习交流,未经上传用户书面授权,请勿作他用。
    关于本文
    本文标题:《三角函数的概念》三角函数PPT课件-.pptx
    链接地址:https://www.163wenku.com/p-3367854.html

    Copyright@ 2017-2037 Www.163WenKu.Com  网站版权所有  |  资源地图   
    IPC备案号:蜀ICP备2021032737号  | 川公网安备 51099002000191号


    侵权投诉QQ:3464097650  资料上传QQ:3464097650
       


    【声明】本站为“文档C2C交易模式”,即用户上传的文档直接卖给(下载)用户,本站只是网络空间服务平台,本站所有原创文档下载所得归上传人所有,如您发现上传作品侵犯了您的版权,请立刻联系我们并提供证据,我们将在3个工作日内予以改正。

    163文库