人工智能导论2-优质课件.ppt
- 【下载声明】
1. 本站全部试题类文档,若标题没写含答案,则无答案;标题注明含答案的文档,主观题也可能无答案。请谨慎下单,一旦售出,不予退换。
2. 本站全部PPT文档均不含视频和音频,PPT中出现的音频或视频标识(或文字)仅表示流程,实际无音频或视频文件。请谨慎下单,一旦售出,不予退换。
3. 本页资料《人工智能导论2-优质课件.ppt》由用户(三亚风情)主动上传,其收益全归该用户。163文库仅提供信息存储空间,仅对该用户上传内容的表现方式做保护处理,对上传内容本身不做任何修改或编辑。 若此文所含内容侵犯了您的版权或隐私,请立即通知163文库(点击联系客服),我们立即给予删除!
4. 请根据预览情况,自愿下载本文。本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
5. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007及以上版本和PDF阅读器,压缩文件请下载最新的WinRAR软件解压。
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 人工智能 导论 优质 课件
- 资源描述:
-
1、1l是一种形式语言,具有严密的理论体系l是一种常用的知识表示方法例:City(北京)City(上海)Age(张三,23)(x)(y)(z)(F(x,y)F(y,z)GF(x,z)2l归结原理是一种定理证明方法,1965年由Robinson提出,从理论上解决了定理证明问题。l归结原理的提出,对机器定理证明问题起到了推动作用。3l无量词约束l元素只是文字的析取l否定符只作用于单个文字l元素间默认为合取l例:I(z)R(z),I(A),R(x)L(x),D(y)4例:(z)(x)(y)(P(x)Q(x)R(y)U(z)1,消蕴涵符理论根据:a b=a b(z)(x)(y)(P(x)Q(x)R(y)U
2、(z)2,移动否定符理论根据:(a b)=a b (a b)=a b(x)P(x)=(x)P(x)(x)P(x)=(x)P(x)(z)(x)(y)(P(x)Q(x)R(y)U(z)53,变量标准化即:对于不同的约束,对应于不同的变量(x)A(x)(x)B(x)=(x)A(x)(y)B(y)4,量词左移(x)A(x)(y)B(y)=(x)(y)A(x)B(y)5,消存在量词(skolem化)原则:对于一个受存在量词约束的变量,如果他不受全程量词约束,则该变量用一个常量代替,如果他受全程量词约束,则该变量用一个函数代替。(z)(x)(y)(P(x)Q(x)R(y)U(z)=(x)(P(x)Q(x)
3、R(f(x)U(a)66,化为合取范式即(ab)(cd)(ef)的形式 (x)(P(x)Q(x)R(f(x)U(a)=(x)(P(x)Q(x)R(f(x)U(a)=(x)P(x)R(f(x)U(a)Q(x)R(f(x)U(a)7,隐去全程量词 P(x)R(f(x)U(a)Q(x)R(f(x)U(a)78,表示为子句集 P(x)R(f(x)U(a),Q(x)R(f(x)U(a)9,变量标准化(变量换名)P(x1)R(f(x1)U(a),Q(x2)R(f(x2)U(a)8定理:若S是合式公式F的子句集,则F永假的充要条件是S不可满足。S不可满足:若nilS,则S不可满足。9目标的否定连同已知条件一
4、起,化为子句集,并给出一种变换的方法,使得 S S1 S2.Sn同时保证当Sn不可满足时,有S不可满足。10l设子句:C1=LC1C2=(L)C2则归结式C为:C=C1 C2l定理:子句集S=C1,C2,Cn与子句集 S1=C,C1,C2,Cn的不可满足性是等价的。其中,C是C1和C2的归结式。11设公理集:P,(PQ)R,(ST)Q,T求证:R子句集:(1)P(2)PQR(3)SQ(4)TQ(5)T(6)R(目标求反)化子句集:(PQ)R=(PQ)R=PQR(ST)Q=(ST)Q=(ST)Q=(SQ)(TQ)=SQ,TQ12子句集:(1)P(2)PQR(3)SQ(4)TQ(5)T(6)R(目
5、标求反)归结:(7)PQ (2,6)(8)Q (1,7)(9)T (4,8)(10)nil (5,9)13l问题:如何找归结对例:P(x)Q(y),P(f(y)R(y)P(A)Q(y),P(f(y)R(y)l基本概念置换s=t1/v1,t2/v2,tn/vn对公式E实施置换s后得到的公式称为E的例,记作Es。例:s1=z/x,A/y,则:Px,f(y),Bs=Pz,f(A),B14l合一如果存在一个S置换,使得Ei中 E1s=E2s=E3s=Ens,则称Ei是可合一的。S为Ei的合一者。例:P(x,f(y),B),P(z,f(B),B)置换s=A/x,B/y,A/z是一个合一者,因为:P(x,
6、f(y),B)s=P(A,f(B),B)P(z,f(B),B)s=P(A,f(B),B)置换s=z/x,B/y和置换s=x/z,B/y也都是这两个谓词公式的合一者。结论:合一者不唯一。15l最一般合一者(mgu)置换最少,限制最少,产生的例最具一般性。如前面的例子:P(x,f(y),B),P(z,f(B),B)对于置换A/x,B/y,A/z,产生的例是:P(A,f(B),B)对于置换=z/x,B/y,产生的例是:P(z,f(B),B)lmgu也不是唯一的。16例:P(x,x,z),P(f(y),f(B),y)前缀表示:(P x x z)(P(f y)(f B)y)置换:(f y)/x(P(f
7、y)(f y)z)(P(f y)(f B)y)置换:B/y,并使得(f B)/x(P(f B)(f B)z)(P(f B)(f B)B)置换:B/z得到置换:(f B)/x,B/y,B/z置换后的结果:(P(f B)(f B)B)17l对于子句C1L1和C2L2,如果L1与L2可合一,且s是其合一者,则(C1C2)s是其归结式。l例:P(x)Q(y),P(f(z)R(z)=Q(y)R(z)18设公理集:(x)(R(x)L(x)(x)(D(x)L(x)(x)(D(x)I(x)求证:(x)(I(x)R(x)化子句集:(x)(R(x)L(x)=(x)(R(x)L(x)=R(x)L(x)(1)19(x
8、)(D(x)L(x)=(x)(D(x)L(x)=D(x)L(x)(2)(x)(D(x)I(x)=D(A)I(A)=D(A)(3)I(A)(4)20l目标求反:(x)(I(x)R(x)=(x)(I(x)R(x)=(x)(I(x)R(x)=I(x)R(x)(5)换名后得子句集:R(x1)L(x1)D(x2)L(x2)D(A)I(A)I(x5)R(x5)21R(x1)L(x1)D(x2)L(x2)D(A)I(A)I(x5)R(x5)I(A)I(x5)R(x5)R(A)A/x5 R(x1)L(x1)L(A)A/x1 D(x2)L(x2)D(A)A/x2 D(A)nil22l例:已知:(x)AT(Joh
9、n,x)AT(Fido,x)AT(John,School)求证:(x)AT(Fido,x)子句集:AT(John,x1)AT(Fido,x1)AT(John,School)AT(Fido,x2)23AT(Fido,x2)AT(John,x1)AT(Fido,x1)子句集:AT(John,x1)AT(Fido,x1)AT(John,School)AT(Fido,x2)AT(John,x2)x2/x1AT(John,School)nilSchool/x2AT(Fido,x2)AT(Fido,x2)AT(Fido,School)24l先进行归结,证明结论的正确性;l用重言式代替结论求反得到的子句;l
10、按照证明过程,进行归结;l最后,在原来为空的地方,得到的就是提取的回答。l修改后的证明树称为修改证明树25c26已知:1,ON(s0)2,(x)(s)(ON(s)AT(box,x,push(x,s)3,(s)(ON(climb(s)4,(s)(ON(s)AT(box,c,s)HB(grasp(s)5,(x)(s)(AT(box,x,s)AT(box,x,climb(s)求解:(s)HB(s)271,ON(s0)2,ON(s1)AT(box,x1,push(x1,s1)3,ON(climb(s2)4,ON(s3)AT(box,c,s3)HB(grasp(s3)5,AT(box,x4,s4)AT(
11、box,x4,climb(s4)6,HB(s5)28HB(s5)ON(s3)AT(box,c,s3)HB(grasp(s3)ON(s3)AT(box,c,s3)grasp(s3)/s5ON(climb(s2)climb(s2)/s3 AT(box,c,climb(s2)ON(s0)ON(s1)AT(box,x1,push(x1,s1)s0/s1AT(box,x1,push(x1,s0)AT(box,x4,s4)AT(box,x4,climb(s4)x4/x1,push(x4,s0)/s4AT(box,x4,climb(push(x4,s0)NILc/x4,push(c,s0)/s2HB(s5)
展开阅读全文