2019届高考数学一轮复习第八章立体几何8.3空间点直线平面之间的位置关系课件(文科)新人教B版.ppt
- 【下载声明】
1. 本站全部试题类文档,若标题没写含答案,则无答案;标题注明含答案的文档,主观题也可能无答案。请谨慎下单,一旦售出,不予退换。
2. 本站全部PPT文档均不含视频和音频,PPT中出现的音频或视频标识(或文字)仅表示流程,实际无音频或视频文件。请谨慎下单,一旦售出,不予退换。
3. 本页资料《2019届高考数学一轮复习第八章立体几何8.3空间点直线平面之间的位置关系课件(文科)新人教B版.ppt》由用户(flying)主动上传,其收益全归该用户。163文库仅提供信息存储空间,仅对该用户上传内容的表现方式做保护处理,对上传内容本身不做任何修改或编辑。 若此文所含内容侵犯了您的版权或隐私,请立即通知163文库(点击联系客服),我们立即给予删除!
4. 请根据预览情况,自愿下载本文。本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
5. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007及以上版本和PDF阅读器,压缩文件请下载最新的WinRAR软件解压。
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 2019 高考 数学 一轮 复习 第八 立体几何 8.3 空间 直线 平面 之间 位置 关系 课件 文科 新人 下载 _一轮复习_高考专区_数学_高中
- 资源描述:
-
1、8.3空间点、直线、平面 之间的位置关系,-2-,知识梳理,双基自测,2,1,自测点评,1.平面的基本性质及推论(1)基本性质1:如果一条直线上的在一个平面内,那么这条直线上的所有点都在这个平面内.(2)基本性质2:经过的三点,有且只有一个平面.(3)基本性质3:如果不重合的两个平面有一个公共点,那么它们过这个点的公共直线.(4)推论1:经过一条直线和的一点,有且只有一个平面.(5)推论2:经过两条,有且只有一个平面.(6)推论3:经过两条,有且只有一个平面.,两点,不在同一条直线上,有且只有一条,直线外,相交直线,平行直线,-3-,知识梳理,双基自测,自测点评,2,1,2.直线与直线的位置关
2、系(1)位置关系的分类(2)判断两直线异面:与一平面相交于一点的直线与的直线是异面直线.,平行,相交,平行,相交,这个平面内不经过交点,2,-4-,知识梳理,双基自测,3,4,1,5,自测点评,1.下列结论正确的打“”,错误的打“”.(1)两个不重合的平面只能把空间分成四个部分.()(2)两个平面,有一个公共点A,就说,相交于点A,记作=A.()(3)已知a,b是异面直线,直线c平行于直线a,那么c与b不可能是平行直线.()(4)如果两个不重合的平面,有一条公共直线a,就说平面,相交,并记作=a.()(5)若a,b是两条直线,是两个平面,且a?,b?,则a,b是异面直线.(),答案,-5-,知
3、识梳理,双基自测,自测点评,2,3,4,1,5,2.如图,在正方体ABCD-A1B1C1D1中,E,F分别为BC,BB1的中点,则下列直线中与直线EF相交的是()A.直线AA1B.直线A1B1C.直线A1D1D.直线B1C1,答案,解析,-6-,知识梳理,双基自测,自测点评,2,3,4,1,5,3.(2017全国,文6)如图,在下列四个正方体中,A,B为正方体的两个顶点,M,N,Q为所在棱的中点,则在这四个正方体中,直线AB与平面MNQ不平行的是(),答案,解析,-7-,知识梳理,双基自测,自测点评,2,3,4,1,5,4.设P表示一个点,a,b表示两条直线,表示两个平面,给出下列四个命题,其
4、中正确的命题是.(填序号)Pa,P?a?;ab=P,b?a?;ab,a?,Pb,P?b?;=b,P,P?Pb,答案,-8-,知识梳理,双基自测,自测点评,2,3,4,1,5,5. 如图所示,在三棱锥A-BCD中,E,F,G,H分别是棱AB,BC,CD,DA的中点,则(1)当AC,BD满足条件时,四边形EFGH为菱形;(2)当AC,BD满足条件时,四边形EFGH是正方形.,答案,解析,-9-,知识梳理,双基自测,自测点评,1.做有关平面基本性质的判断题时,要抓住关键词,如“有且只有”“只能”“最多”等.2.两个不重合的平面只要有一个公共点,那么这两个平面一定相交且得到的是一条直线.3.异面直线是
5、指不同在任何一个平面内,没有公共点的直线.不能错误地理解为不在某一个平面内的两条直线就是异面直线.,-10-,考点1,考点2,考点3,例1如图所示,在正方体ABCD-A1B1C1D1中,E,F分别是AB,AA1的中点,求证:(1)E,C,D1,F四点共面;(2)CE,D1F,DA三线共点.思考如何利用平面的基本性质证明点共线和线共点?,-11-,考点1,考点2,考点3,证明 (1)如图,连接EF,CD1,A1B.E,F分别是AB,AA1的中点,EFA1B.又A1BCD1,EFCD1,E,C,D1,F四点共面.(2)EFCD1,EFCD1,CE与D1F必相交,设交点为P,则由PCE,CE?平面A
6、BCD,得P平面ABCD.同理P平面ADD1A1.又平面ABCD平面ADD1A1=DA,P直线DA.CE,D1F,DA三线共点.,-12-,考点1,考点2,考点3,解题心得1.点线共面问题的证明方法:(1)纳入平面法:先确定一个平面,再证明有关点、线在此平面内;(2)辅助平面法:先证明有关点、线确定平面,再证明其余点、线确定平面,最后证明平面,重合.2.证明多线共点问题,常用的方法是:先证明其中两条直线交于一点,再证明交点在第三条直线上.证明交点在第三条直线上时,第三条直线应为前两条直线所在平面的交线,可以利用公理3证明.,-13-,考点1,考点2,考点3,对点训练1如图,空间四边形ABCD中
7、,点E,F分别是AB,AD的中点,G,H分别在BC,CD上,且BGGC=DHHC=12.(1)求证:E,F,G,H四点共面;(2)设EG与FH交于点P,求证:P,A,C三点共线.,-14-,考点1,考点2,考点3,证明 (1)E,F分别为AB,AD的中点,EFBD.GHBD,EFGH.E,F,G,H四点共面.(2)EGFH=P,PEG,EG?平面ABC,P平面ABC.同理P平面ADC.P为平面ABC与平面ADC的公共点.又平面ABC平面ADC=AC,PAC,P,A,C三点共线.,-15-,考点1,考点2,考点3,例2若直线l1和l2是异面直线,l1在平面内,l2在平面内,l是平面与平面的交线,
展开阅读全文
链接地址:https://www.163wenku.com/p-33626.html