一元气体动力学基础课件.ppt
- 【下载声明】
1. 本站全部试题类文档,若标题没写含答案,则无答案;标题注明含答案的文档,主观题也可能无答案。请谨慎下单,一旦售出,不予退换。
2. 本站全部PPT文档均不含视频和音频,PPT中出现的音频或视频标识(或文字)仅表示流程,实际无音频或视频文件。请谨慎下单,一旦售出,不予退换。
3. 本页资料《一元气体动力学基础课件.ppt》由用户(三亚风情)主动上传,其收益全归该用户。163文库仅提供信息存储空间,仅对该用户上传内容的表现方式做保护处理,对上传内容本身不做任何修改或编辑。 若此文所含内容侵犯了您的版权或隐私,请立即通知163文库(点击联系客服),我们立即给予删除!
4. 请根据预览情况,自愿下载本文。本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
5. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007及以上版本和PDF阅读器,压缩文件请下载最新的WinRAR软件解压。
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 一元 气体 动力学 基础 课件
- 资源描述:
-
1、12.1理想气体一元恒定流动基本方程理想气体一元恒定流动基本方程一、连续性方程一、连续性方程 cA v0Adv微分形式的一元恒定气流的连续性方程微分形式的一元恒定气流的连续性方程 0AdAddvv积分形式积分形式第第12 章章 一元气体动力学基础一元气体动力学基础二、理想气体的状态方程二、理想气体的状态方程 RTpTdTdpdp微分形式微分形式三、运动微分方程三、运动微分方程 理想可压缩流体一维恒定流动(沿轴线理想可压缩流体一维恒定流动(沿轴线s方向),方向),欧拉运动微分方程仍适用欧拉运动微分方程仍适用stspS1dsdpsp0tdsds因为因为0dpdvv则则考虑气体在同介质中流动,浮力和
2、重力平衡,不计单位考虑气体在同介质中流动,浮力和重力平衡,不计单位质量力质量力S理想气体一元恒定流理想气体一元恒定流运动微分方程运动微分方程将上述欧拉方程积分,可得将上述欧拉方程积分,可得理想气体一理想气体一元恒定流的能量方程元恒定流的能量方程,具体积分结果取决,具体积分结果取决于实际气流的不同热力过程于实际气流的不同热力过程cddp与外界无热量交换与外界无热量交换一些常见的理想气体热力过程如下:一些常见的理想气体热力过程如下:(1)定容过程定容过程 气体在密度不变的条件下(不可压缩)进行的气体在密度不变的条件下(不可压缩)进行的热力过程热力过程 积分运动微分方程,则有积分运动微分方程,则有c
3、p22v(2)等温过程等温过程 气体在温度不变的条件下所进行的热力过程气体在温度不变的条件下所进行的热力过程 cpRT2ln2v积分运动微分方程得积分运动微分方程得四、能量方程四、能量方程cddp(3)绝热过程绝热过程 理想气体绝热过程(无摩擦绝热)即为等熵过程理想气体绝热过程(无摩擦绝热)即为等熵过程 cp积分运动微分方程得积分运动微分方程得cRTp212122vvci22v或或为绝热指数为绝热指数cpe22v内内能能压压能能动动能能(4)多变过程多变过程 cpnn为多变指数,对不同的多变过程可以有不同的值。为多变指数,对不同的多变过程可以有不同的值。例如等温过程例如等温过程n=1,绝热过程
4、,绝热过程n=,定容过程,定容过程n=。cRTnnpnn212122vv特别指出:特别指出:T热力学温标(热力学温标(K)p气体绝对压强气体绝对压强12.2 音速、马赫数和滞止参数音速、马赫数和滞止参数取等断面直管,管中充满静止的可压缩气体。活塞在力的作用下,取等断面直管,管中充满静止的可压缩气体。活塞在力的作用下,有一微小速度向右移动,产生一个微小扰动的平面波。小扰动波有一微小速度向右移动,产生一个微小扰动的平面波。小扰动波在流体中的传播速度称为音速,用符号在流体中的传播速度称为音速,用符号c 表示。表示。一、音速(或称声速)一、音速(或称声速)小扰动波传播的物理过程小扰动波传播的物理过程
5、将坐标系固定在将坐标系固定在波峰上波峰上ddpc Kc(K为流体的体积模量或称弹性模量)为流体的体积模量或称弹性模量)气体、液体均适用气体、液体均适用(微压力波(微压力波d,爆炸波不适用),爆炸波不适用)u对于气体,近似认为音速的传播过程是一个即绝对于气体,近似认为音速的传播过程是一个即绝热又没有能量损失的等熵过程热又没有能量损失的等熵过程 RTpc(仅适用于气体)(仅适用于气体)音速的性质音速的性质:1.音速越小,流体越容易被压缩;音速越大,流体音速越小,流体越容易被压缩;音速越大,流体越不容易被压缩。对于绝对不可压缩流体,越不容易被压缩。对于绝对不可压缩流体,c=。因此音速是反映当地流体可
6、压缩性大小的一个指标。因此音速是反映当地流体可压缩性大小的一个指标。2.音速与气体绝对温度的平方根成正比。在气体动音速与气体绝对温度的平方根成正比。在气体动力学中,温度是空间坐标的函数,因此音速也是空力学中,温度是空间坐标的函数,因此音速也是空间坐标的函数。一般称间坐标的函数。一般称c为当地音速。为当地音速。3.不同的气体有不同的绝热指数不同的气体有不同的绝热指数,及不同的气体,及不同的气体常数常数 R,所以各种气体有各自的音速值。,所以各种气体有各自的音速值。二、马赫数二、马赫数cMv当地气流速度与当地音速之比当地气流速度与当地音速之比马赫数的性质马赫数的性质:(1)马赫数是空间坐标的函数。
7、马赫数是空间坐标的函数。(2)马赫数反映了惯性力与弹性力之比。是空气马赫数反映了惯性力与弹性力之比。是空气动力学中一个重要的相似准数动力学中一个重要的相似准数。反映了当地。反映了当地气流的压缩程度。气流的压缩程度。(3)M1的流动,称为亚音速流动;的流动,称为亚音速流动;M1的流的流动,称为超音速流动;动,称为超音速流动;M=1的流动,称为音速的流动,称为音速流动。流动。(a)U0=0;(b)U0a(a为音速)为音速)图图12.3 扰动的影响区域扰动的影响区域sin=a/U0vlHA例:一飞机在例:一飞机在A点上空点上空H=2000m,以速度,以速度v=1836km/h(510m/s)飞行,空
8、气温度)飞行,空气温度t=15(288K),),A点要点要过多长时间听到飞机声?过多长时间听到飞机声?smkRTa/3405.1340510avM8.411arcsinMHctgvtlsctgctgvHt38.48.415102000解:三、滞止参数三、滞止参数气流气流某断面的流速某断面的流速,设想以,设想以无摩擦绝热过程无摩擦绝热过程(等(等熵过程)熵过程)降低至零时降低至零时(驻点或滞止点驻点或滞止点),该滞止断,该滞止断面上其他参数所达到的值,称为气流在该断面的面上其他参数所达到的值,称为气流在该断面的滞止参数。滞止参数以下标滞止参数。滞止参数以下标“0”表示。表示。p0、T0、i0、c
展开阅读全文