七年级数学下期期末复习提纲.doc
- 【下载声明】
1. 本站全部试题类文档,若标题没写含答案,则无答案;标题注明含答案的文档,主观题也可能无答案。请谨慎下单,一旦售出,不予退换。
2. 本站全部PPT文档均不含视频和音频,PPT中出现的音频或视频标识(或文字)仅表示流程,实际无音频或视频文件。请谨慎下单,一旦售出,不予退换。
3. 本页资料《七年级数学下期期末复习提纲.doc》由用户(月ya儿)主动上传,其收益全归该用户。163文库仅提供信息存储空间,仅对该用户上传内容的表现方式做保护处理,对上传内容本身不做任何修改或编辑。 若此文所含内容侵犯了您的版权或隐私,请立即通知163文库(点击联系客服),我们立即给予删除!
4. 请根据预览情况,自愿下载本文。本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
5. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007及以上版本和PDF阅读器,压缩文件请下载最新的WinRAR软件解压。
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 七年 级数 下期 期末 复习 温习 提纲 下载 _七年级下册_华师大版(2024)_数学_初中
- 资源描述:
-
1、七年级数学下期期末复习提纲第六章 一元一次方程(一课时)一、基本概念(一)方程的变形法则法则1:方程两边都 或 同一个数或同一个 ,方程的解不变。例如:在方程7-3x=4左右两边都减去7,得到新方程:-3x+3=4-7。在方程6x=-2x-6左右两边都加上4x,得到新方程:8x=-6。移项:将方程中的某些项改变符号后,从方程的一边移动到另一边,这样的变形叫做移项,注意移项要变号。例如:(1)将方程x57移项得:x7+5 即 x12(2)将方程4x3x4移项得:4x3x4即 x4 法则2:方程两边都除以或 同一个 的数,方程的解不变。例如: (1)将方程5x2两边都除以-5得:x=-(2)将方程
2、x两边都乘以得:x=这里的变形通常称为“将未知数的系数化为1”。 注意:(1)如遇未知数的系数为整数,“系数化为1”时,就要除以这个整数;如遇到未知数的系数为分数,“系数化为1”时,就要乘以这个分数的倒数。(2)不论上一乘以或除以数时,都要注意结果的符号。 方程的解的概念:能够使方程左右两边都相等的未知数的值,叫做方程的解。求不方程的解的过程,叫做解方程。(二)一元一次方程的概念及其解法1定义:只含有一个未知数,并且含有未知数的式子都是 ,未知数的次数是 ,这样的方程叫做一元一次方程。例如:方程7-3x=4、6x=-2x-6都是一元一次方程。而这些方程5x23x+10、2x+yl3y、5就不是
3、一元一次方程。2一元一次方程的一般式为:ax+b=0(其中a、b为常数,且a0)一元一次方程的一般式为:ax=b(其中a、b为常数,且a0)3解一元一次方程的一般步骤步骤:去分母,去括号,移项,合并同类项,未知数的系数化为1。注意:(1)方程中有多重括号时,一般应按先去小括号,再去中括号,最后去大括号的方法去括号,每去一层括号合并同类项一次,以简便运算。(2)“去分母”指去掉方程两边各项系数的分母;去分母时,要求各分母的最小公倍数,去掉分母后,注意添括号。去分母时,不要忘记不等式两边的每一项都乘以最小公倍数(即公分母)(三)一元一次方程的应用1纯数学上的应用:(1)一元一次方程定义的应用;(2
4、)方程解的概念的应用;(3)代数中的应用;(4)公式变形等。2实际生活上的应用:(1)调配问题;(2)行程问题;(3)工程问题;(4)利息问题;(5)面积问题等。二、练习 1下列各式哪些是一元一次方程。 (1) +1=3x4 (2) = (3)x=o (4) 一2x=0 (5)3x一y=l十2y 2解下列方程。(1)(x一3)2一(x一3) ( 答案x5) (2) (x一3)=1x (答案 x=) 注意认真审题,方程的结构特点。选用简便方法。 3解方程。 (l) =l+ (答案x一 ) 点拨:去分母时注意事项,右边的“1”别忘了乘以6,分数线有两层含义,去掉分数线时,要添上括号。(本期的重点方
5、程,应高度重视)(2)x=+l (答案x 点拨:“将分母化为整数”与“去分母”的区别。本题去分母之前,也可以先将方程右边的约分后再去分母。4解方程。 (1)5x一23 (x1或x) (2)=1 ( x一1或x=2) 分析:(1)把5x一2看作一个数a,那么方程可看作a3,根据绝对值的意义得a3或a3 (2)把看作一个数,或把化成 5已知,a一3+(b十1)2 =o,代数式的值比b一a十m多1,求m的值。(答案 m=0) 6m为何值时,关于x的方程4x一2m3x+1的解是x2x一 3m的2倍。(答案 m) 7为了准备小勇6年后上大学的学费5000元,他的父母现在就参加了教育储蓄,下面有两种储蓄方
6、式。 (1)直接存一个6年期,年利率是2.88; (2)先存一个3年期的,3年后将本利和自动转存一个3年期。3年期的年利率是2.7。 你认为哪种储蓄方式开始存人的本金比较少? 分析:要解决“哪种储蓄方式开始存入的本金较少”,只要分别求出这两种储蓄方式开始存人多少元,然后再比较。 8解答下列各问题: 10爸爸为小明存了一个3年期的教育储蓄(3年期的年利率为2.7),3年后能取5405元,他开始存入了多少元? 11一收割机收割一块麦田,上午收了麦田的25,下午收割了剩下麦田的20,结果还剩6公顷麦田未收割,这块麦田一共有多少公顷? 12儿子今年13岁,父亲今年40岁,父亲的年龄可能是儿子年龄的 4
7、倍吗?第七章二元一次方程组(二课时)一、基本概念(一)二元一次方程组的有关概念1二元一次方程的定义:都含有 个未知数,并且 的次数都是1,像这样的整式方程,叫做二元一次方程。一般形式为:ax+by=c(a、b、c为常数,且a、b均不为0)结合一元一次方程,二元一次方程对“元”和“次”作进一步的理解;“元”与“未知数”相通,几个元是指几个未知数,“次”指未知数的最高次数。例如:方程7y-3x=4、-3a+3=4-7b、2m+3n=0、1-s+t=2s等都是二元一次方程。而6x2=-2y-6、4x+8y=-6z、=n等都不是二元一次方程。2二元一次方程组的定义:把两个二元一次方程合在一起,就组成了
8、一个二元一次方程组。例如:、等都是二元一次方程组。而、等都不是二元一次方程组。注意:(1)只要两个方程一共含有两个未知数,也是二元一次方程组。如:、也是二元一次方程组。3二元一次方程和二元一次方程组的解(1)二元一次方程的解:能够使二元一次方程的左右两边都相等的两个未知数的值,叫做二元一次方程的解。(2)二元一次方程组的解:使二元一次方程组的两个方程左右两边的值都相等的两个未知数的值,叫做二元一次方程组的解。(即是两个方程的公共解)注意:写二元一次方程或二元一次方程组的解时要用“联立”符号“”把方程中两个未知数的值连接起来写。二元方程解的写法的标准形式是:,(其中a、b为常数)(二)二元一次方
9、程组的解法1解二元一次方程组的基本思想:“消元”,化二元一次方程组为一元一次方程来解。2二元一次方程组的基本解法(1)代入消元法(代入法)定义:通过“代人”消去一个未知数,将方程组转化为一元一次方程来解的这种解法叫做代人消元法,简称代入法。步骤:选取一个方程,将它写成用一个未知数表示另一个未知数,记作方程。 把代人另一个方程,得一元一次方程。 解这个一元一次方程,得一个未知数的值。 把这个未知数的值代人,求出另一个未知数值,从而得到方程组的解。(2)加减消元法(加减法)定义:通过将两个方程相加(或相减),消去一个未知数,将方程组转化为一元一次方程来解,这种解法叫加减消元法,简称加减法。步骤:把
10、两个方程同一个未知数的系数乘以适当的倍数,使得这两个未知数的绝对值相同。 把未知数的绝对值相同的两个方程相加或相减,得一元一次方程。 解这个一元一次方程,得一个未知数的值。 把这个未知数的值代人原方程组中系数叫简单的一个方程,求出另一个未知数值,从而得到方程组的解。注意:正确选用两种基本解二元一次方程组(1)若二元一次方程组中有一个未知数系数的绝对值为1,适宜用“代入法”。(2)用加减法解二元一次方程组,两方程中若有一个未知数系数的绝对值相等,可直接加减消元;若同一未知数的系数绝对值不等,则应选一个或两个方程变形,使一个未知数的系数的绝对值相等,然后再直接用加减法求解;若方程组比较复杂,应先化
11、简整理。(三)二元一次方程组的应用1纯数学上的应用:(1)二元一次方程定义的应用;(2)方程解的概念的应用;(3)代数中的应用;(4)公式变形等。2实际生活上的应用:(1)调配问题;(2)行程问题;(3)工程问题;(4)利息问题;(5)面积问题等。 二、练习1求二元一次方程3x+y10的正整数解。2已知 x=1 2xnm=5 y=2 是方程组 mxny=5的解,求m和n的值。 分析:因为,x=1,y2是方程组的解。根据方程组解的定义和x=1,y2既满足方程又满足方程于是有: 2n-2m=5 m+2n3 3.A、B两地相距150千米,甲、乙两车分别从A、月两地同时出发,同向而行,甲车3小时可追上
12、乙车;相向而行,两车1.5小时相遇,求甲、乙两车的速度。 分析:这里有两个未知数:甲、乙两车的速度;有两个相等关系: (1)同向而行:甲3小时的行程乙3小时行程十150千米 (2)相向而行:甲1.5小时行程+乙1.5小时行程150千米 解设甲车的速度为x千米/时,乙车的速度为y千米/时。 根据题意,得 3x=3y+150 1.5x+1.5y=150 解这个方程组即可。4.一个三位数,各数位上的数字之和为13,十位上的数字比个位上的数字大2,如果把百位上的数字与个位上的数字对调,那么所得新数比原来的三位数大99,求这个三位数。 分析:怎样设未知数?直接设可以吗? 这里有三个未知数个位上的数字,百
13、位上的数字及十位上数字,若用二元一次方程组求解,该怎样设未知数? 由“十位上数字比个位上的数字大2”,可设原三位数的个位上的数字为x,则十位上数字为x+2,另设百位上数字为y. 如何表示原三位数和新三位数? 100y+10(x+2)+x,l00x+l0(x+2)+y 2个等量关系是什么? (1)百位上数字十十位上数字十个位上数字13 (2)新三位数一原三位数=99 根据题意,得 x+(x+2)+y=13 100x+10(x+2)+y-100y+10(x+2)+x=99解这个方程组即可。例2:方程组ax+by=62 的解应为 x8 mx-20y=-224y10但是由于看错了系数m,而得到的解为,
14、求a+b+m的值;第8章一元一次不等式(三课时)一、基本概念(一)不等式的有关概念和性质1不等式的定义:用 表示不等关系的式子叫做不等式。2不等式解的定义:能使不等式成立的未知数的值,叫做不等式的解。例如:不等式1205x中x25,26,27,等都是1200,那么acbc,a/cb/c不等式的基本性3:不等式的两边都乘以(或除以)同一个负数,不等号的 。即:如果ab,c0,那么acbc,a/cb/c(二)解一元一次不等式1一元一次不等式的定义:只含有一个未知数,且含未知数的式子是整式,未知数的次数是1,像这样的不等式叫做一元一次不等式。例如:方程7-3x4、6x-2x-6、3x-2x+150都
15、是一元一次不等式。而这些方程5x23x+10、2x+yl3y、5就不是一元一次不等式。2一元一次不等式的解法解一元一次不等式的一般步骤步骤:去分母,去括号,移项,合并同类项,未知数的系数化为1。注意:(1)不等式中有多重括号时,一般应按先去小括号,再去中括号,最后去大括号的方法去括号,每去一层括号合并同类项一次,以简便运算。(2)“去分母”指去掉不等式两边各项系数的分母;去分母时,要求各分母的最小公倍数,去掉分母后,注意添括号。去分母时,不要忘记不等式两边的每一项都乘以最小公倍数(即公分母)。不等式的解法与解一元一次方程类似,完全可以把解一元一次方程的思想照搬过来。(三)一元一次不等式组1一元
16、一次不等式组的定义:几个一元一次不等式合起来就组成一元一次不等式组与二元一次方程组不同的是,这里的“几个”可以两个,也可以三个,或更多个。2一元一次不等式组的解集:不等式组中几个不等式的解集的公共部分,叫做这个不等式组的解集。3一元一次不等式组的解集的确定规律同“大”取大,同“小”取小,“大”小“小”大中间找,“大”大“小”小无解了4一元一次不等式组的解法 求不等式组的解集的过程,叫做解不等式组。一般步骤:(1)分别解不等式组中的每个不等式;(2)把每个不等式组的解集在数轴上表示出来;(3)找出各个不等式解集的公共部分;(4)再结合不等式组解集的确定规律,写出不等式组的解集。(四)一元一次不等
17、式(组)的应用1纯数学上的应用:(1)一元一次不等式定义的应用;(2)不等式解集的概念的应用;(3)代数中的应用; 2实际生活上的应用:(1)调配问题;(2)行程问题;(3)工程问题;(4)利息问题;(5)决策问题等。 二、练习(一)选择题: 1、若ab则( ) A、a2b2 B、2ab+52、不等式x3的解集是( ) A、x6 B、x C、x D、x63、下列结论中,正确的是( ) A、x0的解集是x0 B、的解集是x C、3x D、的解集是x04、若代数式3x+4的值不大于0,则x的取值范围是( )2x5 x4 A、 B、 C、 D、5、不等组 的整数解是( ) A、4 B、2、3、4 C
18、、3、4 D、46、如果不等式(a1)x(a1)的解集是x1 C、a1 D、a0的解集是 ; 不等式2x10的解集是 。3、x12的正整数解是 。4、在2(x+2)1的依据是 。5、由xay,a应满足的条件是 。(三)解答题1、解不等式并把它的解集在数轴上表示出来 5x18x+3.2、已知y=53x 试求:当x取何值时,yo。3、解不等式 4、 5x+40x30x60(五)应用题1、如果关于的不等式正整数解为1,2,3,正整数应取怎样的值?2 某宾馆底层客房比二楼少5间, 某旅游团有48人, 若全安排住底层,每间住4人, 房间不够;每间住5人,有房间没有住满5人.又若全安排在二楼, 每间住3人
19、, 房间不够;每间住4人,有房间没有住满4人. 问该宾馆底层有客房多少间?解 设底层有客房x间,则二楼有客房(x+5)间. 由题意得 , 即. 所以x可能是10或11. (*) 由题意得 , 得. 所以x可能是8,9,10. (*) 由(*)和(*)得 x=10.答: 底层有客房10间.第九章多边形(三课时)一、基本概念(一)三角形有关概念1三角形定义:三角形是由三条不在同一条直线上的线段首尾顺次连结组成的平面图形,这三条线段就是三角形的边。三角形专用符号:“” A(顶点)2三角形的顶点、边 B C组成三角形的线段如图中的AB、BC、AC是这个三角形的三边, 两边的公共点叫三角形的顶点。(如点
展开阅读全文