书签 分享 收藏 举报 版权申诉 / 110
上传文档赚钱

类型仪器分析课件-4-原子发射光谱分析.ppt

  • 上传人(卖家):三亚风情
  • 文档编号:3350027
  • 上传时间:2022-08-22
  • 格式:PPT
  • 页数:110
  • 大小:3.21MB
  • 【下载声明】
    1. 本站全部试题类文档,若标题没写含答案,则无答案;标题注明含答案的文档,主观题也可能无答案。请谨慎下单,一旦售出,不予退换。
    2. 本站全部PPT文档均不含视频和音频,PPT中出现的音频或视频标识(或文字)仅表示流程,实际无音频或视频文件。请谨慎下单,一旦售出,不予退换。
    3. 本页资料《仪器分析课件-4-原子发射光谱分析.ppt》由用户(三亚风情)主动上传,其收益全归该用户。163文库仅提供信息存储空间,仅对该用户上传内容的表现方式做保护处理,对上传内容本身不做任何修改或编辑。 若此文所含内容侵犯了您的版权或隐私,请立即通知163文库(点击联系客服),我们立即给予删除!
    4. 请根据预览情况,自愿下载本文。本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
    5. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007及以上版本和PDF阅读器,压缩文件请下载最新的WinRAR软件解压。
    配套讲稿:

    如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。

    特殊限制:

    部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。

    关 键  词:
    仪器 分析 课件 原子 发射光谱分析
    资源描述:

    1、 第四章第四章 原子发射光谱分析原子发射光谱分析4.1 原子发射光谱分析(原子发射光谱分析(AES)4.1.1 概述概述 原子发射光谱分析(Atomic Emission Spectrosmetry,AES),是根据处于激发态的待测元素原子回到基态时发射的特征谱线对待测元素进行分析的方法。原子发射光谱分析的特点 (1)多元素同时检测能力。可同时测定一个样品中的多种元素。每一个样品一经激发后,不同元素都发射特征光谱,这样就可同时测定多种元素。(2)分析速度快。若利用光电直读光谱仪,可在几分钟内同时对几十种元素进行定量分析。分析试样不经化学处理,固体、液体样品都可直接测定。(3)选择性好。每种元素

    2、因原子结构不同,发射各自不同的特征光谱。在分析化学上,这种性质上的差异,对于一些化学性质极相似的元素具有特别重要的意义。例如,铌和钽、锆和铪、几十个稀土元素用其他方法分析都很困难,而发射光谱分析可以毫无困难地将它们区分开来,并分别加以测定。原子发射光谱分析的特点原子发射光谱分析的特点 (4)检出限低。一般光源可达100.1gg-1(或gcm-3),绝对值可达10.01g。电感耦合高频等离子体(ICP)检出限可达ngg-1级。(5)准确度较高。一般光源相对误差约为510,ICP相对误差可达1以下。(6)试样消耗少。(7)ICP光源校准曲线线性范围宽可达46个数量级。这样可测定元素各种不同含量(高

    3、、中、微含量)。一个试样同时进行多元素分析,又可测定各种不同含量。目前ICP-AES已广泛地应用于各个领域之中。(8)常见的非金属元素如氧、硫、氮、卤素等谱线在远紫外区,目前一般的光谱仪尚无法检测;还有一些非金属元素,如P、Se、Te等,由于其激发电位高,灵敏度较低。4.1.2原子发射光谱分析基本原理原子发射光谱分析基本原理 1 原子能级与能级图原子能级与能级图2 原子发射光谱的产生原子发射光谱的产生 原子的外层电子由高能级向低能级跃迁,多余能量以电磁辐射的形式发射出去,这样就得到了发射光谱。原子发射光谱是线状光谱。原子处于基态,在激发光源作用下,原子获得足够的能量,外层电子由基态跃迁到较高的

    4、能量状态即激发态。处于激发态的原子是不稳定的,其寿命小于108s,外层电子就从高能级向较低能级或基态跃迁。多余能量的发射就得到了一条光谱线。谱线波长与能量的关系为12EEhc (4.5)3 谱线强度谱线强度 当体系在一定温度下达到热平衡时,原子在不同状态的分布也达到平衡.玻尔兹曼(Boltzman)用统计热力学方法证明,体系处在热力学平衡状态,单位体积内处于激发态的原子数目Ni和处于基态的原子数目No应遵守如下分布:Ni=No(gi/go).eEi/kT (4.6)式中:gi,go为激发态和基态的统计权重;Ei为谱线的激发电位;k为玻尔兹曼常数(1.3810-23J/K);T为激发的绝对温度(

    5、K)。原子外层电子在i,j两个能级跃迁所产生的谱线强度以Iij表示,它正比于处在激发态的原子数目Ni,即 Iij=NiAijhvij (4.7)式中:Aij为两个能级之间跃迁的概率;h为普朗克常数;vij为跃迁产生谱线的频率.将式(4.6)代入(4.7)得 (4.8)kTENhvAggIieOijijoiij影响谱线强度:(1)统计权重,谱线强度与统计权重成正比;(2)激发电位,谱线强度与激发电位是负指数关系,激发电位愈高,谱线强度愈小,因为激发电位愈高,处在相应激发态的原子数目愈少。(3)跃迁概率,电子从高能级向低能级跃迁时,在符合选择定则的情况下,可向不同的低能级跃迁而发射出不同频率的谱线

    6、;两能级之间的跃迁概率愈大,该频率谱线强度愈大。所以,谱线强度与跃迁概率成正比。影响谱线强度:(4)激发温度,由式(4.8)可以看出,温度升高,一方面可以增加谱线的强度,另一方面使单位体积内处于基态的原子数目减少。原子电离是减少基态原子数的重要因素。(5)基态原子数,单位体积内基态原子的数目和试样中)基态原子数,单位体积内基态原子的数目和试样中的元素浓度有关。在一定的试验条件下,谱线强度与的元素浓度有关。在一定的试验条件下,谱线强度与被测元素浓度成正比,这是发射光谱定量分析的依据。被测元素浓度成正比,这是发射光谱定量分析的依据。4 谱线的自吸与自蚀 样品中的元素产生发射谱线,首先必须让试样蒸发

    7、为气体。在高温激发源的激发下,气体处在高度电离状态,所形成的空间电荷密度大体相等,使得整个气体呈现电中性,这种气体在物理学中称为等离子体。在光谱学中,等离子体是指包含有分子、原子、离子、电子等各种粒子电中性的集合体。等离子体有一定的体积,温度分布是不均匀的。中心部位温度高;边缘部位温度低。中心区域激发态原子多;边缘区域基态原子、低能态原子比较多。这样,元素原子从中心发射一定波长的电磁辐射时,必须通过有一定厚度的原子蒸气,在边缘区域,同元素的基态原子或低能态原子将会对此辐射产生吸收,此过程称为元素的自吸过程。图4.3 谱线自吸现象示意图1无自吸;2有自吸;3自蚀;4严重自蚀 在光谱定量分析中,谱

    8、线强度与被测元素浓度成正比,而自吸严重影响谱线强度。所以,在定量分析时必须注意自吸现象。在一定的实验条件下,单位体积内的基态原子数目No和元素浓度C的关系为 No=aC bq (4.10)式中,b为自吸系数,当浓度很低时,原子蒸气的厚度很小;b=1,即没有自吸。a与q是与试样蒸发过程有关的参数;不发生化学反应时,q=1,a又称为有效蒸发系数 将式(4.10)代入式(4.8),化简得赛伯-罗马金(Scheibe-Lomakin)公式:I =AC b (4.11)式中,A为与测定条件有关的系数。式(4.11)为原子发射光谱定量分析的基本公式。4.1.3 光谱分析仪器光谱分析仪器 原子发射光谱仪器的

    9、基本结构由三部分组成,即激发光源、单色器和检测器。1 光源光源 (1)直流电弧 直流电弧发生器的基本电路如图4.4所示。利用直流电作为激发能源,常用电压为150380V,电流为530A。可变电阻(称作镇流电阻)用以稳定和调节电流的大小,电感(有铁心)用来减小电流的波动。G为放电间隙(分析间隙)。图4.4 直流电弧发生器(2)交流电弧交流电弧 交流电弧有高压电弧和低压电弧两类。前者工作电压达2 0004 000V,可利用高电压把弧隙击穿而燃烧,但由于装置复杂,操作危险,因此实际上已很少使用。低压交流电弧应用较多,工作电压一般为110220V,设备简单,操作也安全。110220VC2C1B1B2G

    10、L2L1GL2L1R1PPR2图4.5 交流电弧发生器(3)高压火花高压火花 高压火花发生器的线路如图4.6所示。电源电压E由调节电阻R适当降压后经变压器B,产生1025kV的高压,然后通过扼流圈D向电容器C充电。当电容器C上的充电电压达到分析间隙G的击穿电压时,就通过电感L向分析间隙G放电,产生具有振荡特性的火花放电。放电完了以后,又重新充电、放电,反复进行。图4.6 高压火花发生器(4)电感耦合高频等离子体光源(inductive coupled frequency plasma,ICP)等离子体是一种由自由电子、离子、中性原子与分子所组成的,在总体上呈电中性的气体。图4.7 ICP形成原

    11、理图ICP 工作原理工作原理 当有高频电流通过线圈时,产生轴向磁场,这时若用高频点火装置产生火花,形成的载流子(离子与电子)在电磁场作用下,与原子碰撞并使之电离,形成更多的载流子,当载流子多到足以使气体有足够的导电率时,在垂直于磁场方向的截面上就会感生出流经闭合圆形路径的涡流,强大的电流产生高热又将气体加热,瞬间使气体形成最高温度可达10 000K的稳定的等离子炬。感应线圈将能量耦合给等离子体,并维持等离子炬。当载气携带试样气溶胶通过等离子体时,被后者加热至6 0007 000K,并被原子化和激发产生发射光谱。2 分光系统(1)棱镜分光系统图4.11 棱镜分光系统的光路图(2)光栅分光系统 光

    12、栅分光系统采用光栅作为分光器件,光栅分光系统的光学特性用色散率、分辨率和闪耀特性3个指标来表征。3 检测系统(1)感光板 用感光板来接收与记录光谱的方法称为照相法,采用照相法记录光谱的原子发射光谱仪称为摄谱仪。感光板由照相乳剂均匀地涂布在玻璃板上而成。感光板上的照相乳剂感光后变黑的黑度,用测微光度计测量以确定谱线的强度。(i)反衬度)反衬度感光乳剂在光的作用下产生一定的黑度S iiS0lg图4.12 乳剂特性曲线 强度为i的光,在感光乳剂上产生一定的照度E,照射时间t后,在感光乳剂上积累一定的曝光量H=E t。黑度S与曝光量H的关系曲线,称为感光板的乳剂特性曲线(参见图4.12)乳剂特性曲线A

    13、B段为曝光不足部分,CD段为曝光过度部分,BC段为正常曝光部分。对正常曝光部分,曝光量H与黑度S的关系是 (4.20)式中,是乳剂特性曲线BC段的斜率,称为反衬度。Hi是惰延量,其倒数表示乳剂的灵敏度。BC部分在横坐标上的投影bc称为感光板的展度。乳剂特性曲线下部与纵坐标的交点相应的黑度S0,称为雾翳黑度。iHHHSilg)lg(lg(2)光电倍增管图4.13 光电倍增管的工作原理图用光电倍增管来接收和记录谱线的方法称为光电直读法。(3)CCD检测器 电荷偶合器件CCD(charge-coupled device)是一种新型固体多道光学检测器件,它是在大规模硅集成电路工艺基础上研制而成的模拟集

    14、成电路芯片。由于其输入面空域上逐点紧密排布着对光信号敏感的像元,因此它对光信号的积分与感光板的情形颇相似。但是,它可以借助必要的光学和电路系统,将光谱信息进行光电转换、储存和传输,在其输出端产生波长强度二维信号,信号经放大和计算机处理后在末端显示器上同步显示出人眼可见的图谱,无需感光板那样的冲洗和测量黑度的过程。目前这类检测器已经在光谱分析的许多领域获得了应用。4.1.4 分析方法分析方法 1 光谱定性分析光谱定性分析 由于各种元素的原子结构不同,在光源的激发作用下,试样中每种元素都发射自己的特征光谱。光谱定性分析一般多采用摄谱法。试样中所含元素只要达到一定的含量,都可以有谱线摄谱在感光板上。

    15、摄谱法操作简单,价格便宜,快速,在几小时内可将含有的数十种元素定性检出。它是目前进行元素定性检出的最好方法。(1)元素的分析线与最后线元素的分析线与最后线 每种元素发射的特征谱线有多有少,多的可达几千条。当进行定性分析时,不需要将所有的谱线全部检出,只须检出几条合适的谱线就可以了。进行分析时所使用的谱线称为分析线。如果只见到某元素的一条谱线,不能断定该元素确实存在于试样中,因为有可能是其他元素谱线的干扰。检出某元素是否存在,必须有两条以上不受干扰的最后线与灵敏线。灵敏线是元素激发电位低、强度较大的谱线,多是共振线。最后线是指当样品中某元素的含量逐渐减少时,最后仍能观察到的几条谱线。它也是该元素

    16、的最灵敏线。(2)分析方法分析方法 (i)铁光谱比较法 这是目前最通用的方法,它采用铁的光谱做为波长的标尺,来判断其他元素的谱线。标准光谱图是在相同条件下,在铁光谱上方准确地绘出68中元素的逐条谱线并放大20倍的图片。铁光谱比较法实际上是与标准光谱图进行比较,因此又称为标准光谱图比较法。(ii)标准试样光谱比较法 将要检出元素的纯物质或纯化合物与试样并列摄谱于同一感光板上,在映谱仪上检查试样光谱与纯物质光谱。若两者谱线出现在同一波长位置上,即可说明某一元素的某条谱线存在。此法多用于不经常遇到的元素分析。2 光谱半定量分析 光谱半定量分析可以给出试样中某元素的大致含量。若分析任务对准确度要求不高

    17、,多采用光谱半定量分析。例对钢材与合金的分类、矿产品位的大致估计等等,特别是分析大批样品时,采用光谱半定量分析,尤为简单而快速。光谱半定量分析常采用摄谱法中比较黑度法,这个方法须配制一个基体与试样组成近似的被测元素的标准系列。在相同条件下,在同一块感光板上标准系列与试样并列摄谱;然后在映谱仪上用目视法直接比较试样与标准系列中被测元素分析线的黑度。黑度若相同,则可做出试样中被测元素的含量与标准样品中某一个被测元素含量近似相等的判断 3 光谱定量分析(1)光谱定量分析的关系式 光谱定量分析主要是根据谱线强度与被测元素浓度的关系来进行的。如前所述,当温度一定时谱线强度I与被测元素浓度c成正比,即 I

    18、=A c (4.25)当考虑到谱线自吸时,有如下关系式 I=Acb (4.26)式中b为自吸系数。b随浓度c增加而减小,当浓度很小无自吸时,b=1。式(4.26)是光谱定量分析的基本关系式。这个公式由Schiebe G(赛伯)和Lomakin B A(罗马金)先后独立提出的,又称为Schiebe-Lomakin公式。.(2)内标法)内标法 (i)基本关系式 内标法是相对强度法,首先要选择分析线对:选择一条被测元素的谱线为分析线,再选择其他元素的一条谱线为内标线,所选内标线的元素为内标元素。内标元素可以是试样的基体元素,也可以是加入一定量试样中不存在的元素。分析线与内标线组成分析线对。分析线强度

    19、I,内标线强度I0,被测元素浓度与内标元素浓度分别为c与c0,b与b0分别为分析线与内标线的自吸系数。根据(4.26)式,分别有 I=A1cb (4.27)I0=A0 c0b0 (4.28)分析线与内标线强度之比R称为相对强度 (4.29)式中内标元素含量c0为常数,实验条件一定,A=A1/A0c0b0为常数,则 (4.30)00010bbcAcAIIRbAcIIR0 对式(4.30)取对数,得 (4.31)(4.31)式是内标法光谱定量分析的基本关系式。AcbRlglglg(ii)内标元素与分析线对的选择)内标元素与分析线对的选择1)内标元素与被测元素在光源作用下应有相近的蒸发性质。2)内标

    20、元素若是外加的,必须是试样不含有或含量极少可以忽略的。3)分析线对选择要匹配:或两条都是原子线,或两条都是离子线,尽量避免一条是原子线、一条是离子线。4)分析线对两条谱线的激发电位相近。若内标元素与被测元素的电离电位相近,分析线对激发电位也相近,这样的分析线对称为“匀称线对”。5)分析线对波长应尽量接近。分析线对两条谱线应没有自吸或自吸很小,并且不受其他谱线的干扰。(3)校准曲线法 在确定的分析条件下,用三个或三个以上含有不同浓度被测元素的标准样品与试样在相同条件下激发光谱,以分析线强度I,或内标法分析线对强度比R或lgR对浓度c或lgc做校准曲线。再由校准曲线求得试样中被测元素含量。(i)摄

    21、谱法)摄谱法 要将标准样品与试样在同一块感光板上摄谱,求出一系列黑度值,由乳剂特性曲线求出lgI,再将lgR对lgc做校准曲线,进而求出未知元素含量。这个方法称为三标准法三标准法。若分析线与内标线的黑度都落在感光板正常曝光部分,这时可直接用分析线对黑度差 S与lgc建立校准曲线。选用的分析线对波长比较靠近,此分析线对所在的感光板部位乳剂特性基本相同。分析线黑度S1、内标黑度S2按(4.20)式可得 S1=1lgH1i1 S2=2lgH2i2 因分析线对所在部位乳剂特性基本相同,故 12 i1i2 I 如前所述,曝光量与谱线强度成正比,因此 S1=lgI1i S2=lgI2i黑度差黑度差 (4.

    22、32)(4.32)式与内标法光谱定量分析公式(4.31)结合,得到 Sblgc+lgA (4.33)由(4.33)式可看出,分析线对黑度值都落在乳剂特性曲线直线部分,分析线与内标线黑度差S与被测元素浓度的对数lgc呈线性关系。(4.33)式同样是摄谱法定量分析内标法的基本关系式。RIIIISSSlglg)lg(lg212121(ii)光电直读法)光电直读法 ICP光源稳定性好,一般可以不用内标法,但由于有时试液的粘度等会有差异而引起试样导入的不稳定,也采用内标法。ICP光电直读光谱仪商品仪器上带有内标通道,可自动进行内标法测定。光电直读法中,在相同条件下激发试样与标样的光谱,测量标准样品的电压

    23、值U和Ur,U、Ur分别为分析线与内标线的电压值;再绘制lgUlgc或lg(U/Ur)lgc校准曲线;最后,求出试样中被测元素含量。这些都由计算机来处理分析结果。(4)标准加入法 当测定低含量元素时,找不到合适的基体来配制标准试样时,采用标准加入法比较好。设试样中被测元素含量为cx,在几份试样中分别加入不同浓度c1、c2、c3、ci的被测元素;在同一实验条件下激发光谱,然后测量试样与不同加入量样品分析线对的强度比R。在被测元素浓度低时自吸系数b=1,分析线对强度比Rc,Rc图为一直线,见图4.14。将直线外推,与横坐标相交截距的绝对值即为试样中待测元素含量cx。图4.14 标准加入法 根据式(

    24、4.30),有 R=I/I0=Acb b=1,则 R=A(cx ci)R=0,则 cx=ci4.1.5 原子发射光谱分析在环境检测中的应用原子发射光谱分析在环境检测中的应用4.2 原子吸收光谱分析(原子吸收光谱分析(AAS)4.2.1 概述概述 原子吸收光谱分析(Atomic Absorption Spectrometry,AAS)又称原子吸收分光光度分析。原子吸收光谱分析是基于试样蒸气相中被测元素的基态原子对由光源发出的该原子的特征性窄频辐射产生共振吸收,其吸光度在一定范围内与蒸气相中被测元素的基态原子浓度成正比,以此测定试样中该元素含量的一种仪器分析方法。原子吸收分光光度法具有以下特点:原

    25、子吸收分光光度法具有以下特点:(1)灵敏度高 火焰原子吸收分光光度法测定大多数金属元素的相对灵敏度为1.010-81.010-10gmL-1,非火焰原子吸收分光光度法的绝对灵敏度为1.010-121.010-14g。这是由于原子吸收分光光度法测定的是占原子总数99以上的基态原子,而原子发射光谱测定的是占原子总数不到1的激发态原子,所以前者的灵敏度和准确度比后者高的多。(2)精密度好 由于温度的变化对测定影响较小,该法具有良好的稳定性和重现性,精密度好。一般仪器的相对标准偏差为12,性能好的仪器可达0.10.5%.(3)选择性好,方法简便 由光源发出特征性入射光很简单,且基态原子是窄频吸收,元素

    26、之间的干扰较小,可不经分离在同一溶液中直接测定多种元素,操作简便。(4)准确度高,分析速度快 测定微、痕量元素的相对误差可达0.10.5,分析一个元素只需数十秒至数分钟。(5)应用广泛 可直接测定岩矿、土壤、大气飘尘、水、植物、食品、生物组织等试样中70多种微量金属元素,还能用间接法测度硫、氮、卤素等非金属元素及其化合物。该法已广泛应用于环境保护、化工、生物技术、食品科学、食品质量与安全、地质、国防、卫生检测和农林科学等各部门。对原子吸收分析法基本理论的讨论,主要是解决两个方面的问题:基态原子的产生以及它的浓度与试样中该元素含量之间的定量基态原子的产生以及它的浓度与试样中该元素含量之间的定量关

    27、系;基态原子吸收光谱的特性及基态原子的浓度与吸光度之关系;基态原子吸收光谱的特性及基态原子的浓度与吸光度之间的关系间的关系 4.2.2 原子吸收光谱分析的基本原理原子吸收光谱分析的基本原理 1 原子吸收光谱的产生原子吸收光谱的产生 基态原子吸收其共振辐射,外层电子由基态跃迁至激发态而产生原子吸收光谱。原子吸收光谱位于光谱的紫外区和可见区。2 原子吸收光谱的谱线轮廓原子吸收光谱的谱线轮廓 原子吸收光谱线并不是严格地几何意义上的线(几何线无宽度),而是有相当窄的频率或波长范围,即有一定的宽度。一束不同频率强度为I0的平行光通过厚度为l的原子蒸气,一部分光被吸收,透过光的强度Iv服从吸收定律 Iv=

    28、I0exp(-kvl)(4.34)式中kv是基态原子对频率为v的光的吸收系数。不同元素原子吸收不同频率的光,透过光强度对吸收光频率作图,图 4.15 Iv与v的关系 图 4.16 原子吸收光谱轮廓图 半宽度受到很多因素的影响半宽度受到很多因素的影响 (1)自然宽度 没有外界影响,谱线仍有一定的宽度称为自然宽度。它与激发态原子的平均寿命有关,平均寿命愈长,谱线宽度愈窄。不同谱线有不同的自然宽度,在多数情况下约为105nm数量级。(2)Doppler(多普勒)变宽 通常在原子吸收光谱法测定条件下,Doppler变宽是影响原子吸收光谱线宽度的主要因素。Doppler宽度是由于原子热运动引起的,又称为

    29、热变宽。从物理学中可知,无规则热运动的发光的原子运动方向背离检测器,则检测器接收到的光的频率较静止原子所发的光的频率低。反之,发光原子向着检测器运动,检测器接受光的频率较静止原子发的光频率高,这就是Doppler效应。r0DART)2(ln2cv2v(4.35)(3)压力变宽压力变宽 当原子吸收区气体压力变大时,相互碰撞引起的变宽是不可忽略的。原子之间的相互碰撞导致激发态原子平均寿命缩短,引起谱线变宽。根据与其碰撞的原子不同,又可分为Lorentz变宽及Holtsmark变宽两种。Lorentz(劳伦茨)变宽是指被测元素原子和其它种粒子碰撞引起的变宽,它随原子区内气体压力增大和温度升高而增大。

    30、Holtsmark(赫鲁兹马克)变宽是指和同种原子碰撞而引起的变宽,也称为共振变宽。只有在被测元素浓度高时才起作用,在原子吸收法中可忽略不计。Lorentz变宽与Doppler变宽有相同的数量级,也可达10-3nm。(4)自吸变宽自吸变宽 由自吸现象而引起的谱线变宽称为自吸变宽。光源空心阴极灯发射的共振线被灯内同种基态原子所吸收产生自吸现象,从而使谱线变宽。灯电流愈大,自吸变宽愈严重。此外,由于外界电场或带电粒子、离子形成的电场及磁场的作用,使谱线变宽称为场致变宽。这种变宽影响不大。3 原子吸收光谱的测量(1)积分吸收积分吸收 在吸收线轮廓内,吸收系数的积分称为积分吸收系数,简称为积分吸收,它

    31、表示吸收的全部能量。从理论上可以得出,积分吸收与原子蒸气中吸收辐射的原子数成正比。数学表达式为 (4.38)式中,e为电子电荷;m为电子质量;c为光速;N0为单位体积内基态原子数;f为振子强度,即能被入射辐射激发的每个原子的平均电子数,它正比于原子对特定波长辐射的吸收几率。式(4.38)是原子吸收光谱法的重要理论依据 fNmcedvKv02(2)峰值吸收峰值吸收 1955年Walsh A提出,在温度不太高的稳定火焰条件下,峰值吸收系数与火焰中被测元素的原子浓度也成正比。吸收线中心波长处的吸收系数K0为峰值吸收系数,简称峰值吸收。前面指出,在通常原子吸收测定条件下,原子吸收线轮廓取决于Doppl

    32、er宽度,吸收系数为 2002ln)(2expDvvvvKK(4.39)积分式(4.39),得将式(4.38)代入,得 峰值吸收系数与原子浓度成正比,只要能测出K0就可得到N0。DvvKdvK002ln21(4.40)fNmcevKD0202ln2(4.41)(3)锐线光源锐线光源 峰值吸收的测定是至关重要的,在分子光谱中光源都是使用连续光谱,连续光谱的光源很难测准峰值吸收,Walsh还提出用锐线光源测量峰值吸收,从而解决了原子吸收的实用测量问题。锐线光源是发射线半宽度远小于吸收线半宽度的光源,如空心阴极灯。在使用锐线光源时,光源发射线半宽度很小,并且发射线与吸收线的中心频率一致。这时发射线的

    33、轮廓可看作一个很窄的矩形,即峰值吸收系数Kv在此轮廓内不随频率而改变,吸收只限于发射线轮廓内。这样,一定的K0即可测出一定的原子浓度,见图4.17。图4.17 峰值吸收测量示意图(4)实际测量实际测量 强度为I0的某一波长的辐射通过均匀的原子蒸气时,根据吸收定律,有 II0exp(-Kvl)式中,I0与I分别为入射光与透射光的强度,Kv为峰值吸收系数,l为原子蒸气吸收层厚度。当在原子吸收线中心频率附近一定频率范围v测量,则 (4.42)(4.43)dvIIvv00dvlKIIvvv)exp(0 使用锐线光源,v很小,用中心频率处的峰值吸收系数K0来表示原子对辐射的吸收。吸光度A为lKdvIlK

    34、dvIdvlKIdvIIIAvvvvvvvv0000000043.0)exp(lg)exp(lglg(4.44)将(4.41)式代入(4.44)式,得到022ln243.0flNmcevAD(4.55)在原子吸收测定条件下,如前所述原子蒸气中基态原子数N0近似地等于原子总数N。在实际测量中,要测定的是试样中某元素的含量而不是蒸气中的原子总数。但是,实验条件一定,被测元素的浓度c与原子蒸气中原子总数保持一定的比例关系,即 N0=a c (4.56)式中a为比例常数 代入式(4.55)中,则 实验条件一定,各有关的参数都是常数,吸光度为 A=kc (4.58)式中k为常数。(4.58)式为原子吸收

    35、测量的基本关系式。flacmcevA2D2ln243.04.57)4 基态原子数与原子吸收定量基础基态原子数与原子吸收定量基础 在通常的原子吸收测定条件下,原子蒸气中基态原子数近似地等于总原子数。在原子蒸气中(包括被测元素原子),可能会有基态与激发态存在。根据热力学原理,在一定温度下达到热平衡时,基态与激发态的原子数的比例遵循Boltzmann分布定律)exp(00kTEggNNiii 式中,Ni与N0分别为激发态与基态的原子数;gi与g0为激发态与基态能级的统计权重,它表示能级的简并度;k为Boltzmann常数,其值为1.3810-23JK-1;T为热力学温度;Ei为激发能。在原子吸收光谱

    36、法中,原子化温度一般小于3 000K,大多数元素的最强共振线都低于600nm,Ni/N0值绝大部分都在10-3以下,激发态和基态原子数之比小于千分之一,激发态原子可以忽略。因此,可以认为,基态原子数N0近似地等于总原子数N。4.2.3原子吸收分光光度计原子吸收分光光度计 原子吸收分光光度计由光源、原子化器、分光器、检测系统等几部分组成。基本构造见图4.18图4.18 原子吸收分光光度计基本构造示意图1 光源 光源的功能是发射被测元素的特征共振辐射。对光源的基本要求是:发射的共振辐射的半宽度要明显小于吸收线的半宽度;辐射强度大;背景低,低于特征共振辐射强度的1%;稳定性好,30min之内漂移不超

    37、过1;噪声小于0.1;使用寿命长于5Ah。空心阴极灯放电是一种特殊形式的低压辉光放电,放电集中于阴极空腔内。当两极之间施加几百伏电压时,便产生辉光放电。在电场作用下,电子在飞向阳极的途中,与载气原子碰撞并使之电离,放出二次电子,使电子与正离子数目增加,以维持放电。正离子从电场获得动能。如果正离子的动能足以克服金属阴极表面的晶格能,当其撞击在阴极表面时,就可以将原子从晶格中溅射出来。除溅射作用之外,阴极受热也要导致阴极表面元素的热蒸发。溅射与蒸发出来的原子进入空腔内,再与电子、原子、离子等发生第二类碰撞而受到激发,发射出相应元素的特征共振辐射。2 原子化器 原子化器的功能是提供能量,使试样干燥、

    38、蒸发和原子化。在原子吸收光谱分析中,试样中被测元素的原子化是整个分析过程的关键环节。实现原子化的方法,最常用有两种:一种是火焰原子化法,是原子光谱分析中最早使用的原子化方法,至今仍在广泛地被应用;另一种是非火焰原子化法,其中应用最广的是石墨炉电热原子化法。(1)火焰原子化器火焰原子化器 火焰原子化法中常用的预混合型原子化器,其结构如图4.20所示。这种原子化器由雾化器、混合室和燃烧器组成。图4.20 预混合型火焰原子化器示意图(2)非火焰原子化器非火焰原子化器 非火焰原子化器中,常用的是管式石墨炉原子化器,其结构如图4.21所示。图4.21 管式石墨炉原子化器示意图石墨炉原子化器的操作分为干燥

    39、、灰化、原子化和净化4步,由微机控制实行程序升温。图4.22为一程序升温过程的示意图。图4.22 无火焰原子化器程序升温过程(3)低温原子化器低温原子化器 低温原子化是利用某些元素(如Hg)本身或元素的氢化物(如AsH3)在低温下的易挥发性,将其导入气体流动吸收池内进行原子化。目前通过该原子化方式测定的元素有Hg,As,Sb,Se,Sn,Bi,Ge,Pb,Te等。生成氢化物是一个氧化还原过程,所生成的氢化物是共价分子型化合物,沸点低,易挥发分离分解。以As为例,反应过程可表示如下:AsCl34NaBH4HCl8H2OAsH34KCI4HBO213H2AsH3在热力学上是不稳定的,在900温度下

    40、就能分解出自由As原子,实现快速原子化。3 分光器 分光器由入射和出射狭缝、反射镜和色散元件组成,其作用是将所需要的共振吸收线分离出来。分光器的关键部件是色散元件,现在商品仪器都是使用光栅。原子吸收光谱仪对分光器的分辨率要求不高,曾以能分辨开镍三线Ni230.003,Ni231.603,Ni231.096nm为标准,后采用Mn279.5和Mn279.8nm代替Ni三线来检定分辨率。光栅放置在原子化器之后,以阻止来自原子化器内的所有不需要的辐射进入检测器。4 检测系统 原子吸收光谱仪中广泛使用的检测器是光电倍增管,最近一些仪器也采用CCD作为检测器。4.2.4 干扰及其消除方法干扰及其消除方法

    41、1 物理干扰 物理干扰是指试样在转移、蒸发过程中任何物理因素变化而引起的干扰效应。属于这类干扰的因素有:试液的粘度、溶剂的蒸汽压、雾化气体的压力等。物理干扰是非选择性干扰,对试样各元素的影响基本是相似的。配制与被测试样相似的标准样品,是消除物理干扰的常用的方法。在不知道试样组成或无法匹配试样时,可采用标准加入法或稀释法来减小和消除物理干扰。2 化学干扰 化学干扰是指待测元素与其它组分之间的化学作用所引起的干扰效应,它主要影响待测元素的原子化效率,是原子吸收分光光度法中的主要干扰来源。它是由于液相或气相中被测元素的原子与干扰物质组成之间形成热力学更稳定的化合物,从而影响被测元素化合物的解离及其原

    42、子化。消除化学干扰的方法有:化学分离;使用高温火焰;加入释放剂和保护剂;使用基体改进剂等。3 电离干扰 在高温下原子电离,使基态原子的浓度减少,引起原子吸收信号降低,此种干扰称为电离干扰。电离效应随温度升高、电离平衡常数增大而增大,随被测元素浓度增高而减小。加入更易电离的碱金属元素,可以有效地消除电离干扰。4 光谱干扰 光谱干扰包括谱线重叠、光谱通带内存在非吸收线、原子化池内的直流发射、分子吸收、光散射等。当采用锐线光源和交流调制技术时,前3种因素一般可以不予考虑,主要考虑分子吸收和光散射地影响,它们是形成光谱背景的主要因素。分子吸收干扰分子吸收干扰是指在原子化过程中生成的气体分子、氧化物及盐

    43、类分子对辐射吸收而引起的干扰。光光散射散射是指在原子化过程中产生的固体微粒对光产生散射,使被散射的光偏离光路而不为检测器所检测,导致吸光度值偏高。在石墨炉原子吸收法中,背景吸收的影响比火焰原子吸收法严重,若不扣除背景,有时根本无法进行测定,测量时必须予以校正。(1)用邻近非共振线校正背景)用邻近非共振线校正背景 先用分析线测量原子吸收与背景吸收的总吸光度,再用邻近线测量背景吸收的吸光度,两次测量值相减即得到校正了背景之后原子吸收的吸光度。非共振线与分析线波长相近,可以模拟分析线的背景吸收,但这种方法只适用于分析线附近背景分布比较均匀的场合。先用分析线测量原子吸收与背景吸收的总吸光度,再用邻近线

    44、测量背景吸收的吸光度,两次测量值相减即得到校正了背景之后原子吸收的吸光度。非共振线与分析线波长相近,可以模拟分析线的背景吸收,但这种方法只适用于分析线附近背景分布比较均匀的场合。(2)连续光源校正背景)连续光源校正背景 先用锐线光源测量分析线的原子吸收和背景吸收的总吸光度,再用氘灯(紫外区)或碘钨灯、氙灯(可见区)测量同一波长处的背景吸收,由于原子吸收谱线波长范围仅10-310-2nm,所以原子吸收可以忽略。计算两次测量的吸光度之差,即得到校正了背景的原子吸收。由于商品仪器多采用氘灯为连续光源扣除背景,故此法亦常称为氘灯扣除背景法。(3)塞曼效应校正背景 塞曼效应校正背景是基于光的偏振特性,分

    45、为光源调制法和吸收线调制法两大类,后者应用较广。调制吸收线的方式有恒定磁场调制方式和可变磁场调制方式。两种调制方式仪器的光路如图4-23和图4-24所示。图4-23 恒定磁场调制方式光路图 图4-24 可变磁场调制方式光路图 塞曼效应校正背景不受波长限制,可校正吸光度高达1.52.0的背景,而氘灯只能校正吸光度小于1的背景,背景校正的准确度较高。恒定磁场调制方式,测量灵敏度比常规原子吸收法有所降低,可变磁场调制方式的测量灵敏度与常规原子吸收法相当。(4)自吸效应校正背景)自吸效应校正背景 低电流脉冲供电时,空心阴极灯发射锐线光谱,测定的是原子吸收和背景吸收的总吸光度。高电流脉冲供电时,空心阴极

    46、灯发射线变宽,当空心阴极灯内积聚的原子浓度足够高时,发射线产生自吸,在极端的情况下出现谱线自蚀,这是测得的是背景吸收的吸光度。上述两种脉冲供电条件下测得的吸光度之差,即为校正了背景吸收的原子吸收的吸光度。4.2.5 原子吸收光谱分析的实验技术原子吸收光谱分析的实验技术 1 测量条件的选择(1)分析线 通常选用共振吸收线为分析线,测定高含量元素时,可以选用灵敏度较低的非共振吸收线为分析线。(2)狭缝宽度)狭缝宽度 狭缝宽度影响光谱通带宽度与检测器接受的能量。原子吸收光谱分析中,光谱重叠干扰的几率小,可以允许使用较宽的狭缝。调节不同的狭缝宽度,测定吸光度随狭缝宽度而变化,当有其他的谱线或非吸收光进

    47、入光谱通带内,吸光度将立即减小。不引起吸光度减小的最大狭缝宽度,即为应选取的合适的狭缝宽度。(3)空心阴极灯的工作电流)空心阴极灯的工作电流 空心阴极灯一般需要预热1030min才能达到稳定输出。灯电流过小,放电不稳定,故光谱输出不稳定,且光谱输出强度小;灯电流过大,发射谱线变宽,导致灵敏度下降,校正曲线弯曲,灯寿命缩短。选用灯电流的一般原则是,在保证有足够强且稳定的光强输出条件下,尽量使用较低的工作电流。通常以空心阴极灯上标明的最大电流的1/22/3作为工作电流。在具体的分析场合,最适宜的工作电流由实验确定。(4)原子化条件的选择)原子化条件的选择 在火焰原子化法中,火焰类型和特征是影响原子

    48、化效率的主要因素。对低、中温元素,使用空气乙炔火焰;对高温元素,采用氧化亚氮乙炔高温火焰;对分析线位于短波区(200nm以下)的元素,使用空气氢火焰是合适的。(5)进样量)进样量 进样量过小,吸收信号弱,不便于测量;进样量过大,在火焰原子化法中,对火焰产生冷却效应,在石墨炉原子化法中,会增加除残的困难。在实际工作中,应测定吸光度随进样量的变化,达到最满意的吸光度的进样量,即为应选择的进样量。2 定量分析方法定量分析方法(1)标准曲线法 配制一组合适的标准溶液,由低浓度到高浓度,依次喷入火焰,分别测定其吸光度A。以测得的吸光度为纵坐标,待测元素的含量或浓度c为横坐标,绘制A c标准曲线。在相同的

    49、试验条件下,喷入待测试样溶液,根据测得的吸光度,由标准曲线求出试样中待测元素的含量。在使用本法时要注意以下几点。所配制的标准溶液的浓度,应在吸光度与浓度呈直线关系的范围内;1)标准溶液与试样溶液都应用相同的试剂处理;2)应该扣除空白值;3)在整个分析过程中操作条件应保持不变;4)由于喷雾效率和火焰状态经常变动,标准曲线的斜率也随之变动,因此,每次测定前应用标准溶液对吸光度进行检查和校正。(2)标准加入法)标准加入法 取相同体积的试样溶液两份,分别移入容量瓶A及B中,另取一定量的标准溶液加入B中,然后将两份溶液稀释至刻度,测出A及B两溶液的吸光度。设试样中待测元素(容量瓶A中)的浓度为cx,加入

    50、标准溶液(容量瓶B中)的浓度为c0,A溶液的吸光度为Ax,B溶液的吸光度为A0,则可得:Axkcx A0k(c0cx)由上两式得:cx c0 xxAAA0 实际测定中,都采用下述作图法:取若干份(例如四份)体积相同的试样溶液,从第二份开始按比例加入不同量的待测元素的标准溶液,然后用溶剂稀释至一定体积(设试样中待测元素的浓度为cx,加入标准溶液后浓度分别为cxc0、cx2c0、cx4c0),分别测得其吸光度(Ax,A1,A2及A3),以A对加入量作图,得图4.25所示的直线。这时曲线并不通过原点。显然,相应的截距所反映的吸收值正是试样中待测元素所引起的效应。如果外延此曲线使与横坐标相交,相应于原

    展开阅读全文
    提示  163文库所有资源均是用户自行上传分享,仅供网友学习交流,未经上传用户书面授权,请勿作他用。
    关于本文
    本文标题:仪器分析课件-4-原子发射光谱分析.ppt
    链接地址:https://www.163wenku.com/p-3350027.html

    Copyright@ 2017-2037 Www.163WenKu.Com  网站版权所有  |  资源地图   
    IPC备案号:蜀ICP备2021032737号  | 川公网安备 51099002000191号


    侵权投诉QQ:3464097650  资料上传QQ:3464097650
       


    【声明】本站为“文档C2C交易模式”,即用户上传的文档直接卖给(下载)用户,本站只是网络空间服务平台,本站所有原创文档下载所得归上传人所有,如您发现上传作品侵犯了您的版权,请立刻联系我们并提供证据,我们将在3个工作日内予以改正。

    163文库