保真度准则下的信源编码(ok)讲解课件.ppt
- 【下载声明】
1. 本站全部试题类文档,若标题没写含答案,则无答案;标题注明含答案的文档,主观题也可能无答案。请谨慎下单,一旦售出,不予退换。
2. 本站全部PPT文档均不含视频和音频,PPT中出现的音频或视频标识(或文字)仅表示流程,实际无音频或视频文件。请谨慎下单,一旦售出,不予退换。
3. 本页资料《保真度准则下的信源编码(ok)讲解课件.ppt》由用户(三亚风情)主动上传,其收益全归该用户。163文库仅提供信息存储空间,仅对该用户上传内容的表现方式做保护处理,对上传内容本身不做任何修改或编辑。 若此文所含内容侵犯了您的版权或隐私,请立即通知163文库(点击联系客服),我们立即给予删除!
4. 请根据预览情况,自愿下载本文。本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
5. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007及以上版本和PDF阅读器,压缩文件请下载最新的WinRAR软件解压。
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 保真度 准则 信源 编码 ok 讲解 课件
- 资源描述:
-
1、第第7 7章章 保真度准则下的信源编码保真度准则下的信源编码7.1 7.1 失真度和平均失真度失真度和平均失真度7.2 7.2 信息率失真函数及其性质信息率失真函数及其性质7.3 7.3 二元信源和离散对称信源的二元信源和离散对称信源的R(D)R(D)函数函数 7.4 7.4 保真度准则下的信源编码定理保真度准则下的信源编码定理 7.5 7.5 联合有失真信源信道编码定理联合有失真信源信道编码定理7.6 7.6 有失真信源编码定理的实用意义有失真信源编码定理的实用意义第1页,共27页。思考思考1 1、什么是信息传输率及信息传输速率?、什么是信息传输率及信息传输速率?2 2、信道容量的概念及几种
2、表述?(几个单位?)、信道容量的概念及几种表述?(几个单位?)3 3、平均互信息量的物理意义?、平均互信息量的物理意义?4 4、平均互信息量与信息传输率的关系?画图说明。、平均互信息量与信息传输率的关系?画图说明。5 5、平均互信息量是否有最大值和最小值,这两个值如何找、平均互信息量是否有最大值和最小值,这两个值如何找 到?与什么有关。到?与什么有关。6 6、平均互信息量是否有最大值和最小值分别表示什么?、平均互信息量是否有最大值和最小值分别表示什么?7 7、说明信道容量与信息率失真函数的对偶性?、说明信道容量与信息率失真函数的对偶性?第2页,共27页。那么在允许一定程度失真的条件下,能够把信
3、源信息那么在允许一定程度失真的条件下,能够把信源信息压缩到什么程度,也就是,允许一定程度失真的条件下,压缩到什么程度,也就是,允许一定程度失真的条件下,如何能快速的传输信息,这就是本章所要讨论的问题。本如何能快速的传输信息,这就是本章所要讨论的问题。本章所讨论的内容是量化、数模转换、频带压缩和数据压缩章所讨论的内容是量化、数模转换、频带压缩和数据压缩的理论基础。的理论基础。第第7 7章章 保真度准则下的信源编码保真度准则下的信源编码 前面介绍的是无失真信源编码前面介绍的是无失真信源编码,适用于离散信源适用于离散信源,只要只要满足满足RC,RC,总能做到寻找一种编码方法做到无失真编码总能做到寻找
4、一种编码方法做到无失真编码,但实但实际信源有些是模拟信源际信源有些是模拟信源,其熵为无穷大其熵为无穷大,此时无论如何也找此时无论如何也找不到一种编码方法做到无失真不到一种编码方法做到无失真.在实际生活中,人们不一定在实际生活中,人们不一定要求完全无失真的恢复消息,也就是允许有一定的失真。要求完全无失真的恢复消息,也就是允许有一定的失真。第3页,共27页。1、失真度、失真度 根据信道编码定理,我们可以把信道编码、信道和信道译根据信道编码定理,我们可以把信道编码、信道和信道译码等价成是一个没有任何干扰的广义信道,这样收信者收到码等价成是一个没有任何干扰的广义信道,这样收信者收到消息后,所产生的失真
5、只是由信源编码带来的。我们也可以消息后,所产生的失真只是由信源编码带来的。我们也可以把信源编码和信源译码等价成一个信道把信源编码和信源译码等价成一个信道,称此信道为称此信道为试验信试验信道。道。7.1 7.1 失真度和平均失真度失真度和平均失真度信信源源信信源源编编码码信信道道编编码码信道信道信信道道译译码码信信源源译译码码信信宿宿干扰干扰调调制制解解调调第4页,共27页。信源信源信宿信宿试验信道试验信道 试验信道试验信道模型模型:现在我们要研究在给定允许失真的条件下,是否可以设现在我们要研究在给定允许失真的条件下,是否可以设计一种信源编码使信息传输率为最低。即计一种信源编码使信息传输率为最低
6、。即I(X,Y)最小最小.即即:在保证一定失真度情况下在保证一定失真度情况下,寻找信息传输率的最小值寻找信息传输率的最小值,(信信道中平均每个符号携带的最少的信息量道中平均每个符号携带的最少的信息量),为此为此,首先讨论失真首先讨论失真的测度的测度.7.1 7.1 失真度和平均失真度失真度和平均失真度第5页,共27页。失真度定义失真度定义:设离散无记忆信源变量为设离散无记忆信源变量为 ,其概率分布为其概率分布为 12,.rUu uu1()().()rP uP uP u对于每一对对于每一对(u,v),我们指定一个非负的函数,我们指定一个非负的函数(,)0ijd u v称为称为单个符号的失真度(或
7、称失真函数)单个符号的失真度(或称失真函数)接收端变量为接收端变量为 ,12,.sVv vv7.1 7.1 失真度和平均失真度失真度和平均失真度第6页,共27页。2、物理意义:、物理意义:失真函数用来表征信源发出一个符号失真函数用来表征信源发出一个符号 ,而在接收端再现成符号而在接收端再现成符号 所引起的误差或失真。所引起的误差或失真。d越小表越小表示失真越小,等于示失真越小,等于0表示没有失真。表示没有失真。可以将所有的失真函数排列成矩阵的形式:可以将所有的失真函数排列成矩阵的形式:iujv111212122212(,)(,).(,)(,)(,).(,).(,)(,).(,)ssrrrsd
8、u vd u vd u vd u vd u vd u vDd u vd u vd u v我们称它为我们称它为失真矩阵失真矩阵。7.1 7.1 失真度和平均失真度失真度和平均失真度第7页,共27页。例例1:0(,)1ijd u vijij当uv当uv失真矩阵为:失真矩阵为:01.110.1.11.0D这种失真成为这种失真成为汉明失真汉明失真7.1 7.1 失真度和平均失真度失真度和平均失真度第8页,共27页。例例2:删除信源:删除信源1sr0(,)1(1/2()ijijd u vijjsi除j=s以外的所有i和所有j)所有对于二元删除信源对于二元删除信源r=2,s=301/2111/20D7.1
9、 失真度和平均失真度失真度和平均失真度第9页,共27页。例例3:对称信源:对称信源r=s,定义失真度为:,定义失真度为:2(,)()ijjid u vvu当当r=s=3时,时,012U 012V 失真矩阵为:失真矩阵为:014101410D7.1 7.1 失真度和平均失真度失真度和平均失真度第10页,共27页。4、平均失真度、平均失真度(,)ijDE d u v若已知试验信道的传递概率,则平均失真度为:若已知试验信道的传递概率,则平均失真度为:,11(,)(,)()(/)(,)rsijiijU VijDP u v d u vP u P vu d u v 若平均失真度若平均失真度 不大于我们所允
10、许的失真不大于我们所允许的失真D,我们称此为,我们称此为保真度准则保真度准则。D凡满足保真度准则的这些试验信道称为凡满足保真度准则的这些试验信道称为D失真许可的试验信道失真许可的试验信道。把所有。把所有D失真许可的试验信道组成一个集合,用符号失真许可的试验信道组成一个集合,用符号 表示表示。DB7.1 7.1 失真度和平均失真度失真度和平均失真度第11页,共27页。7.2 7.2 信息率失真函数及其性质信息率失真函数及其性质1、信息率失真函数、信息率失真函数 当信源和失真函数给定后,我们总希望在满足保真度准则当信源和失真函数给定后,我们总希望在满足保真度准则下寻找平均互信息的最小值。也就是在下
11、寻找平均互信息的最小值。也就是在 中找一个信道,使中找一个信道,使平均互信息取极小值。这个最小值就是在平均互信息取极小值。这个最小值就是在 的条件下,的条件下,信源必须传输的最小平均信息量。信源必须传输的最小平均信息量。DB()min(;)DBR DI U VDD 改变试验信道求平均互信息的最小值,实质上是选择一种改变试验信道求平均互信息的最小值,实质上是选择一种编码方式使信息传输率为最小。编码方式使信息传输率为最小。第12页,共27页。2、信息率失真函数的性质、信息率失真函数的性质 1)、R(D)的定义域是的定义域是max(0,)D (1)、和和m inDmin()R D 允许失真度D的最小
展开阅读全文