双曲线的简单几何性质PPT优秀课件2.ppt
- 【下载声明】
1. 本站全部试题类文档,若标题没写含答案,则无答案;标题注明含答案的文档,主观题也可能无答案。请谨慎下单,一旦售出,不予退换。
2. 本站全部PPT文档均不含视频和音频,PPT中出现的音频或视频标识(或文字)仅表示流程,实际无音频或视频文件。请谨慎下单,一旦售出,不予退换。
3. 本页资料《双曲线的简单几何性质PPT优秀课件2.ppt》由用户(三亚风情)主动上传,其收益全归该用户。163文库仅提供信息存储空间,仅对该用户上传内容的表现方式做保护处理,对上传内容本身不做任何修改或编辑。 若此文所含内容侵犯了您的版权或隐私,请立即通知163文库(点击联系客服),我们立即给予删除!
4. 请根据预览情况,自愿下载本文。本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
5. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007及以上版本和PDF阅读器,压缩文件请下载最新的WinRAR软件解压。
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 双曲线 简单 几何 性质 PPT 优秀 课件
- 资源描述:
-
1、新课标人教版课件系列新课标人教版课件系列数学选修1-12.2.2双曲线的简单几何性质教学目标教学目标 v知识与技能目标知识与技能目标v了解平面解析几何研究的主要问题:(1)根据条件,求出表示曲线的方程;(2)通过方程,研究曲线的性质理解双曲线的范围、对称性及对称轴,对称中心、离心率、顶点、渐近线的概念;掌握双曲线的标准方程、会用双曲线的定义解决实际问题;通过例题和探究了解双曲线的第二定义,准线及焦半径的概念,利用信息技术进一步见识圆锥曲线的统一定义v过程与方法目标过程与方法目标v(1)复习与引入过程v引导学生复习得到椭圆的简单的几何性质的方法,在本节课中不仅要注意通过对双曲线的标准方程的讨论,
2、研究双曲线的几何性质的理解和应用,而且还注意对这种研究方法的进一步地培养由双曲线的标准方程和非负实数的概念能得到双曲线的范围;由方程的性质得到双曲线的对称性;由圆锥曲线顶点的统一定义,容易得出双曲线的顶点的坐标及实轴、虚轴的概念;应用信息技术的几何画板探究双曲线的渐近线问题;探究双曲线的扁平程度量椭圆的离心率 56P一一.复习引入复习引入 v1.双曲线的定义是怎样的?v2.双曲线的标准方程是怎样的?22221xyab-=22221yxab-=双曲线的简单几何性质v思考回顾 椭圆的简单几何性质?范围范围;对称性对称性;顶点顶点;离心率等离心率等l 双曲线是否具有类似的性质呢?回想:回想:我们是怎
3、样研究上述性质的?我们是怎样研究上述性质的?一、双曲线的简单几何性质 yB2A1A2 B1 xOb aM NQl1.范围:两直线两直线x=a的外侧的外侧l2.对称性:关于关于x轴轴,y轴轴,原点对称原点对称 原点是双曲线的对称中心 对称中心叫双曲线的中心22221xyab-=一.双曲线的简单几何性质yB2A1A2 B1 xOb aM NQl3.顶点:(1)双曲线与双曲线与x轴的两个交轴的两个交A(-a,0),A (a,0)叫双曲线的顶点叫双曲线的顶点22221xyab-=l12(2)实轴实轴:线段线段A A 实轴长实轴长:2a 虚轴虚轴:线段线段B B 虚轴长虚轴长:2b 1 2 1 2v y
4、B2A1A2 B1 xOb aM NQ22221xyab-=l4.渐进线:(1)渐进线的确定:矩形的对角线 (2)直线的方程:y=xba渐渐接近但永不相交(1)(1)概念概念:焦距与实轴长之比焦距与实轴长之比yB2A1A2 B1 xOb aM NQl5.离心率(2)定义式定义式:e=c a(3)范围范围:e1 (ca)(4)双曲线的形状与e的关系2221bcakeaa-=-即:e越大,渐进线斜率越大,其开口越阔.关于X轴、Y轴、原点都对称。图形方程范围对称性顶点离心率准线(-a,0),B(0,b),B1(0,-b)+b2 a2=1 (ab0)直线直线x=+a,和y=+b所围成的矩形里 A(a,
5、0)A1 e=a ac c(0e1(4)双曲线的形状与e的关系2221bcakeaa-=-即:e越大,渐进线斜率越大,其开口越阔.二.应 用 举 例:例1.求双曲线9y 16x =144的实半轴与虚半轴长,焦点坐标,离心率及渐进线方程.22 例2.求一渐进线为求一渐进线为3x+4y=0,一个焦一个焦点为点为(5,0)的双曲线的标准方程的双曲线的标准方程.v例例3 3:点:点M M(x,y)x,y)到定点到定点F F(5 5,0 0)的距离和它到定直线)的距离和它到定直线l:x=16/5l:x=16/5的距离的比是常数的距离的比是常数5/45/4,求点求点M M的轨迹。的轨迹。v例例4 4:双曲
6、线型冷却塔的外形,是双曲线:双曲线型冷却塔的外形,是双曲线的一部分绕其虚轴旋转所成的曲面,它的一部分绕其虚轴旋转所成的曲面,它的最小半径为的最小半径为12m12m,上口半径为,上口半径为13m13m,下,下口半径口半径m m,高为,高为55m55m,试选择适当的坐标,试选择适当的坐标系,求出此双曲线的方程。系,求出此双曲线的方程。四.小结:1.双曲线的几何性质:范围;对称性;顶点;渐进线;离心率2.几何性质的应用 85.每一年,我都更加相信生命的浪费是在于:我们没有献出爱,我们没有使用力量,我们表现出自私的谨慎,不去冒险,避开痛苦,也失去了快乐。约翰B塔布 86.微笑,昂首阔步,作深呼吸,嘴里
7、哼着歌儿。倘使你不会唱歌,吹吹口哨或用鼻子哼一哼也可。如此一来,你想让自己烦恼都不可能。戴尔卡内基 87.当一切毫无希望时,我看着切石工人在他的石头上,敲击了上百次,而不见任何裂痕出现。但在第一百零一次时,石头被劈成两半。我体会到,并非那一击,而是前面的敲打使它裂开。贾柯瑞斯 88.每个意念都是一场祈祷。詹姆士雷德非 89.虚荣心很难说是一种恶行,然而一切恶行都围绕虚荣心而生,都不过是满足虚荣心的手段。柏格森 90.习惯正一天天地把我们的生命变成某种定型的化石,我们的心灵正在失去自由,成为平静而没有激情的时间之流的奴隶。托尔斯泰 91.要及时把握梦想,因为梦想一死,生命就如一只羽翼受创的小鸟,
展开阅读全文