20春九数下(冀教版)31.4 第2课时 用树形图法求简单事件的概率 精品课件.ppt
- 【下载声明】
1. 本站全部试题类文档,若标题没写含答案,则无答案;标题注明含答案的文档,主观题也可能无答案。请谨慎下单,一旦售出,不予退换。
2. 本站全部PPT文档均不含视频和音频,PPT中出现的音频或视频标识(或文字)仅表示流程,实际无音频或视频文件。请谨慎下单,一旦售出,不予退换。
3. 本页资料《20春九数下(冀教版)31.4 第2课时 用树形图法求简单事件的概率 精品课件.ppt》由用户(田田田)主动上传,其收益全归该用户。163文库仅提供信息存储空间,仅对该用户上传内容的表现方式做保护处理,对上传内容本身不做任何修改或编辑。 若此文所含内容侵犯了您的版权或隐私,请立即通知163文库(点击联系客服),我们立即给予删除!
4. 请根据预览情况,自愿下载本文。本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
5. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007及以上版本和PDF阅读器,压缩文件请下载最新的WinRAR软件解压。
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 20春九数下冀教版31.4 第2课时 用树形图法求简单事件的概率 精品课件 20 春九数下 冀教版 31.4 课时 树形 图法求 简单 事件 概率 精品 课件 下载 _九年级下册_冀教版(2024)_数学_初中
- 资源描述:
-
1、,导入新课,讲授新课,当堂练习,课堂小结,学练优九年级数学下(JJ) 教学课件,第2课时 用树形图法求简单事件的概率,31.4 用列举法求简单事件概率,第三十一章 随机事件的概率,学习目标,1.进一步理解等可能事件概率的意义. 2.学习运用树形图计算事件的概率. 3.进一步学习分类思想方法,掌握有关数学技能.,导入新课,问题引入,现有A、B、C三盘包子,已知A盘中有两个酸菜包和一个糖包,B盘中有一个酸菜包和一个糖包和一个韭菜包,C盘中有一个酸菜包和一个糖包以及一个馒头.老师就爱吃酸菜包.如果老师从每个盘中各选一个包子(馒头除外),那么老师选的包子全部是酸菜包的概率是多少?,讲授新课,互动探究,
2、问题1 抛掷一枚均匀的硬币,出现正面向上的概率是多少?,P(正面向上)=,问题2 同时抛掷两枚均匀的硬币,出现正面向上的概率是多少?,可能出现的结果有,(正,正),(正,反),(反,正),(反,反),P(正面向上)=,(正,正),(正,反),(反,正),同时抛掷两枚均匀的硬币,出现正面向上的概率是多少?,开始,第2枚,第1枚,正,反,正,反,正,正,结果,(反,反),(正,正),(正,反),(反,正),P(正面向上)=,树状图的画法,一个试验,第一个因素,第二个因素,如一个试验中涉及2个因数,第一个因数中有2种可能情况;第二个因数中有3种可能的情况.,A,B,1,2,3,1,2,3,则其树形图
3、如图.,n=23=6,树状图法:按事件发生的次序,列出事件可能出现的结果.,问题 尝试用树状图法列出小明和小华所玩游戏中所有可能出现的结果,并求出事件A,B,C的概率.,A:“小明胜” B:“小华胜” C “平局”,合作探究,解:,小明,小华,结果,开始,一次游戏共有9个可能结果,而且它们出现的可能性相等.,因此P(A)=,事件C发生的所有可能结果: (石头,石头)(剪刀,剪刀)(布,布).,事件A发生的所有可能结果: (石头,剪刀)(剪刀,布)(布,石头);,事件B发生的所有可能结果: (剪刀,石头)(布,剪刀)(石头,布);,P(B)=,P(C)=,画树状图求概率的基本步骤,(1)明确一次
4、试验的几个步骤及顺序; (2)画树状图列举一次试验的所有可能结果; (3)数出随机事件A包含的结果数m,试验的所有可能结果数n; (4)用概率公式进行计算.,典例精析,例1 某班有1名男生、2名女生在校文艺演出中获演唱奖,另有2名男生、2名女生获演奏奖.从获演唱奖和演奏奖的学生中各任选一人去领奖,求两人都是女生的概率.,解:设两名领奖学生都是女生的事件为A,两种奖项各任选1人的结果用“树状图”来表示.,开始,获演唱奖的,获演奏奖的,男,女,女,女1,男2,男1,女2,女1,男2,男1,女1,男2,男1,女2,女2,共有12中结果,且每种结果出现的可能性相等,其中2名都是女生的结果有4种,所以事
5、件A发生的概率为P(A)=,计算等可能情形下概念的关键是确定所有可能性相等的结果总数n和求出事件A发生的结果总数m,“树状图”能帮助我们有序的思考,不重复,不遗漏地得出n和m.,例2 甲、乙、丙三人做传球的游戏,开始时,球在甲手中,每次传球,持球的人将球任意传给其余两人中的一人,如此传球三次.,(1)写出三次传球的所有可能结果(即传球的方式);,(2)指定事件A:“传球三次后,球又回到甲的手中”, 写出A发生的所有可能结果;,(3)求P(A).,解:(1),第二次,第三次,结果,开始:甲,共有八种可能的结果,每种结果出现的可能性相同;,(2)传球三次后,球又回到甲手中,事件A发生有两种可能出现
展开阅读全文