20春九数下(冀教版)30.4 第2课时实际问题中二次函数的最值问题 精品课件.ppt
- 【下载声明】
1. 本站全部试题类文档,若标题没写含答案,则无答案;标题注明含答案的文档,主观题也可能无答案。请谨慎下单,一旦售出,不予退换。
2. 本站全部PPT文档均不含视频和音频,PPT中出现的音频或视频标识(或文字)仅表示流程,实际无音频或视频文件。请谨慎下单,一旦售出,不予退换。
3. 本页资料《20春九数下(冀教版)30.4 第2课时实际问题中二次函数的最值问题 精品课件.ppt》由用户(田田田)主动上传,其收益全归该用户。163文库仅提供信息存储空间,仅对该用户上传内容的表现方式做保护处理,对上传内容本身不做任何修改或编辑。 若此文所含内容侵犯了您的版权或隐私,请立即通知163文库(点击联系客服),我们立即给予删除!
4. 请根据预览情况,自愿下载本文。本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
5. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007及以上版本和PDF阅读器,压缩文件请下载最新的WinRAR软件解压。
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 20春九数下冀教版30.4 第2课时实际问题中二次函数的最值问题 精品课件 20 春九数下 冀教版 30.4 课时 实际问题 二次 函数 问题 精品 课件 下载 _九年级下册_冀教版(2024)_数学_初中
- 资源描述:
-
1、,30.4 二次函数的应用,导入新课,讲授新课,当堂练习,课堂小结,学练优九年级数学下(JJ) 教学课件,第2课时 实际问题中二次函数的最值问题,第三十章 二次函数,学习目标,1.分析实际问题中变量之间的二次函数关系.(难点) 2. 能应用二次函数的性质解决图形中最大面积问题.(重点) 3.能应用二次函数的性质解决商品销售过程中的最大利润问题.(重点) 4.弄清商品销售问题中的数量关系及确定自变量的取值范围. (难点),导入新课,情境引入,思考:在日常生活中存在着许许多多的与数学知识有关的实际问题.解决生活中面积的实际问题时,你会用到了什么知识?商品买卖过程中,作为商家追求利润最大化是永恒的追
2、求.那怎么获取最大利润呢?,引例:用长为6米的铝合金材料做一个形状如图所示的矩形窗框.窗框的高于宽各位多少时,它的透光面积最大?最大透光面积是多少?(铝合金型材宽度不计),解:设矩形窗框的宽为x m,则高为 m.这里应有x0, 故0x2.,矩形窗框的透光面积y与x之间的函数关系式是:,讲授新课,即,配方得,所以,当x=1时,函数取得最大值,最大值y=1.5.,x=1满足0x2,这时,因此,所做矩形窗框的宽为1 m、高为1.5 m时,它的透光面积最大,最大面积是1.5 m2.,例1 用总长为60m的篱笆围成矩形场地,矩形面积S随矩形一边长l的变化而变化.当l是多少时,场地的面积S最大?,问题1
3、矩形面积公式是什么?,典例精析,问题2 如何用l表示另一边?,问题3 面积S的函数关系式是什么?,例1 用总长为60m的篱笆围成矩形场地,矩形面积S随矩形一边长l的变化而变化.当l是多少时,场地的面积S最大?,解:根据题意得,S=l(30-l),即 S=-l2+30l (0l30).,因此,当 时, S有最大值,也就是说,当l是15m时,场地的面积S最大.,变式1 如图,用一段长为60m的篱笆围成一个一边靠墙的矩形菜园,墙长32m,这个矩形的长、宽各为多少时,菜园的面积最大,最大面积是多少?,x,x,60-2x,问题2 我们可以设面积为S,如何设自变量?,问题3 面积S的函数关系式是什么?,问
4、题4 如何求解自变量x的取值范围?墙长32m对此题有什么作用?,问题5 如何求最值?,最值在顶点处,即当x=15m时,S=450m2.,问题1 变式1与例1有什么不同?,设垂直于墙的边长为x米,Sx(602x)2x260x.,0602x32,即14x30.,变式2 如图,用一段长为60m的篱笆围成一个一边靠墙的矩形菜园,墙长18m,这个矩形的长、宽各为多少时,菜园的面积最大,最大面积是多少?,x,x,60-2x,问题1 变式2与变式1有什么异同?,问题2 可否模仿变式1设未知数、列函数关系式?,问题3 可否试设与墙平行的一边为x米?则如何表示另一边?,设矩形面积为Sm2,与墙平行的一边为x米,
5、则,问题4 当x=30时,S取最大值,此结论是否正确?,问题5 如何求自变量的取值范围?,0 x 18.,问题6 如何求最值?,由于30 18,因此只能利用函数的增减性求其最值.当x=18时,S有最大值是378.,不正确.,变式3 用总长度为24m的不锈钢材料制成如图所示的外观为矩形的框架,其横档和竖档分别与AD,AB平行.设AB=x m,当x为多少是,矩形框架ABCD的面积最大,最大面积是多少?,解:, 当x=3时,S有最大值,且S最大=12m2.,A,D,B,C,实际问题中求解二次函数最值问题,不一定都取图象顶点处,要根据自变量的取值范围.通过变式1与变式2的对比,希望同学们能够理解函数图
6、象的顶点、端点与最值的关系,以及何时取顶点处、何时取端点处才有符合实际的最值.,方法总结,知识要点,二次函数解决几何面积最值问题的方法,1.求出函数解析式和自变量的取值范围; 2.配方变形,或利用公式求它的最大值或最小值, 3.检查求得的最大值或最小值对应的自变量的值必须在自变量的取值范围内.,某商品现在的售价为每件60元,每星期可卖出300件,已知商品的进价为每件40元,则每星期销售额是 元,销售利润 元.,探究交流,18000,6000,数量关系,(1)销售额= 售价销售量;,(2)利润= 销售额-总成本=单件利润销售量;,(3)单件利润=售价-进价.,例2 某商品现在的售价为每件60元,
7、每星期可卖出300件,市场调查反映:每涨价1元,每星期少卖出10件;每降价1元,每星期可多卖出18件,已知商品的进价为每件40元,如何定价才能使利润最大?,涨价销售 每件涨价x元,则每星期售出商品的利润y元,填空:,20,300,20+x,300-10x,y=(20+x)(300-10x),建立函数关系式:y=(20+x)(300-10x),即:y=-10x2+100x+6000.,6000,自变量x的取值范围如何确定?,营销规律是价格上涨,销量下降,因此只要考虑销售量就可以,故300-10x 0,且x 0,因此自变量的取值范围是0 x 30.,涨价多少元时,利润最大,最大利润是多少?,y=-
展开阅读全文