20春八数下(冀教版)第二十二章 小结与复习(推荐精品课件).ppt
- 【下载声明】
1. 本站全部试题类文档,若标题没写含答案,则无答案;标题注明含答案的文档,主观题也可能无答案。请谨慎下单,一旦售出,不予退换。
2. 本站全部PPT文档均不含视频和音频,PPT中出现的音频或视频标识(或文字)仅表示流程,实际无音频或视频文件。请谨慎下单,一旦售出,不予退换。
3. 本页资料《20春八数下(冀教版)第二十二章 小结与复习(推荐精品课件).ppt》由用户(田田田)主动上传,其收益全归该用户。163文库仅提供信息存储空间,仅对该用户上传内容的表现方式做保护处理,对上传内容本身不做任何修改或编辑。 若此文所含内容侵犯了您的版权或隐私,请立即通知163文库(点击联系客服),我们立即给予删除!
4. 请根据预览情况,自愿下载本文。本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
5. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007及以上版本和PDF阅读器,压缩文件请下载最新的WinRAR软件解压。
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 20春八数下冀教版第二十二章 小结与复习推荐精品课件 20 春八数下 冀教版 第二十二 小结 复习 推荐 精品 课件 下载 _八年级下册_冀教版(2024)_数学_初中
- 资源描述:
-
1、,小结与复习,学练优八年级数学下(JJ) 教学课件,第二十二章 四边形,要点梳理,考点讲练,课堂小结,课后作业,几 何 语 言,文字叙述,对边平行,对边相等,对角相等, AD=BC ,AB=DC., 四边形ABCD是平行四边形,, A=C, B=D., 四边形ABCD是平行四边形,,一、平行四边形的性质,对角线互 相平分, 四边形ABCD是平行四边形,, OA=OC,OB=OD., 四边形ABCD是平行四边形,, ADBC ,ABDC.,要点梳理,O,几 何 语 言,文字叙述,两组对边相等,一组对边平行且相等,四边形ABCD是平行四边形,, AD=BC ,AB=DC., 四边形ABCD是平行四
2、边形,, AB=DC,ABDC.,二、平行四边形的判定,对角线互相平分, 四边形ABCD是平行四边形,, OA=OC,OB=OD.,两组对边分别平行(定义), 四边形ABCD是平行四边形,, ADBC ,ABDC.,O,1.三角形的中位线定义:连接三角形两边中点的线段叫做三角形的中位线.,2.三角形的中位线性质:三角形的中位线平行于第三边,并且等于第三边的一半.,三、三角形的中位线,用符号语言表示,DE是ABC的中位线,DEBC,平行且相等,平行 且四边相等,平行 且四边相等,四个角 都是直角,对角相等 邻角互补,四个角 都是直角,互相平分且相等,互相垂直平分且相等,每一条对角线平分一组对角,
3、互相垂直且平分,每一条对角线平分一组对角,四、矩形、菱形、正方形的性质,定义:有一角是直角的平行四边形 三个角是直角的四边形 对角线相等的平行四边形,定义:一组邻边相等的平行四边形 四条边都相等的四边形 对角线互相垂直的平行四边形,定义:一组邻边相等且有一个角是直角的平行四边形 有一组邻边相等的矩形 有一个角是直角的菱形,五、矩形、菱形、正方形的判定方法,六、多边形的内角和与外角和,多边形的内角和等于(n-2) 180 ,多边形的外角和等于 360 ,例1 如图,在平行四边形ABCD中,下列结论中错误的是( ) A1=2 BBAD=BCD CAB=CD DAC=BC,【解析】A.四边形ABCD
4、是平行四边形, ABCD,1=2,故A正确; B.四边形ABCD是平行四边形, BAD=BCD,故B正确; C.四边形ABCD是平行四边形, AB=CD,故C正确;,D,考点讲练,主要考查了平行四边形的性质,关键是掌握平行四边形对边相等且平行,对角相等.,1.如图,已知ABCD中,AE平分BAD,CF平分BCD,分别交BC、AD于E、F求证:AF=EC,证明:四边形ABCD是平行四边形, B=D,AD=BC,AB=CD,BAD=BCD, (平行四边形的对角相等,对边相等) AE平分BAD,CF平分BCD, EAB= BAD,FCD= BCD,EAB= FCD, 在ABE和CDF中 BD ABC
5、D EABFCD ABECDF,BE=DF AD=BC AF=EC,例2 如图,在ABCD中,ODA=90,AC=10cm,BD=6cm,则AD的长为( ) A4cm B5cm C6cm D8cm,【解析】四边形ABCD是平行四边形, AC=10cm,BD=6cm OA=OC= AC=5cm,OB=OD= BD=3cm, ODA=90, AD= =4cm,A,主要考查了平行四边形的性质,平行四边形的对角线互相平分,解题时还要注意勾股定理的应用.,【解析】在ABCD中,对角线AC和BD交于点O,AC=24cm,BD=38cm,AD=28cm, AO=CO=12cm,BO=19cm,AD=BC=2
6、8cm, BOC的周长是:BO+CO+BC=12+19+28=59(cm),2.如图,在ABCD中,对角线AC和BD交于点O,AC=24cm,BD=38cm,AD=28cm,则BOC的周长是( ) A45cm B59cm C62cm D90cm,B,例3 如图,四边形ABCD的对角线交于点O,下列哪组条件不能判断四边形ABCD是平行四边形( ) AOA=OC,OB=OD BBAD=BCD,ABCD CADBC,AD=BC DAB=CD,AO=CO,D,平行四边形的判定方法: 两组对边分别平行的四边形是平行四边形; 两组对边分别相等的四边形是平行四边形; 两组对角分别相等的四边形是平行四边形;
7、对角线互相平分的四边形是平行四边形; 一组对边平行且相等的四边形是平行四边形.,3.如图,点D、C在BF上,ACDE,A=E,BD=CF, (1)求证:AB=EF,(1)证明:ACDE, ACD=EDF, BD=CF,BD+DC=CF+DC, 即BC=DF, 又A=E,ABCEFD(AAS), AB=EF.,(2)连接AF,BE,猜想四边形ABEF的形状,并说明理由,(2)猜想:四边形ABEF为平行四边形, 理由如下:由(1)知ABCEFD, B=F,ABEF, 又AB=EF, 四边形ABEF为平行四边形(一组对边平行且相等的四边形是平行四边形).,例4 已知:AD是ABC的中线,E是AD的中
展开阅读全文