20春八数下(冀教版)22.6 正方形(推荐精品课件).ppt
- 【下载声明】
1. 本站全部试题类文档,若标题没写含答案,则无答案;标题注明含答案的文档,主观题也可能无答案。请谨慎下单,一旦售出,不予退换。
2. 本站全部PPT文档均不含视频和音频,PPT中出现的音频或视频标识(或文字)仅表示流程,实际无音频或视频文件。请谨慎下单,一旦售出,不予退换。
3. 本页资料《20春八数下(冀教版)22.6 正方形(推荐精品课件).ppt》由用户(田田田)主动上传,其收益全归该用户。163文库仅提供信息存储空间,仅对该用户上传内容的表现方式做保护处理,对上传内容本身不做任何修改或编辑。 若此文所含内容侵犯了您的版权或隐私,请立即通知163文库(点击联系客服),我们立即给予删除!
4. 请根据预览情况,自愿下载本文。本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
5. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007及以上版本和PDF阅读器,压缩文件请下载最新的WinRAR软件解压。
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 20春八数下冀教版22.6 正方形推荐精品课件 20 春八数下 冀教版 22.6 正方形 推荐 精品 课件 下载 _八年级下册_冀教版(2024)_数学_初中
- 资源描述:
-
1、,导入新课,讲授新课,当堂练习,课堂小结,学练优八年级数学下(JJ) 教学课件,22.6 正方形,第二十二章 四边形,学习目标,1.探索并证明正方形的性质,并了解平行四边形、 矩形、菱形之间的联系和区别;(重点、难点) 2探索并证明正方形的判定,并了解平行四边形、 矩形、菱形之间的联系和区别;(重点、难点) 3会运用正方形的性质及判定条件进行有关的论证 和计算 . (难点),导入新课,观察下面图形,正方形是我们熟悉的几何图形,在生活中无处不在.,情景引入,你还能举出其他的例子吗?,讲授新课,矩 形,问题1:矩形怎样变化后就成了正方形呢?你有什么 发现?,问题引入,正方形,问题2 菱形怎样变化后
2、就成了正方形呢?你有什么 发现?,正方形,邻边相等,矩形,正方形,菱 形,一个角是直角,正方形,正方形定义:,有一组邻边相等且有一个角是直角的平行四边形叫正方形.,归纳总结,已知:如图,四边形ABCD是正方形. 求证:正方形ABCD四边相等,四个角都是直角.,A,B,C,D,证明:四边形ABCD是正方形. A=90, AB=AC (正方形的定义). 又正方形是平行四边形. 正方形是矩形(矩形的定义), 正方形是菱形(菱形的定义). A=B =C =D = 90, AB= BC=CD=AD.,证一证,已知:如图,四边形ABCD是正方形.对角线AC、BD相交于点O.求证:AO=BO=CO=DO,A
3、CBD.,A,B,C,D,O,证明:正方形ABCD是矩形, AO=BO=CO=DO. 正方形ABCD是菱形. ACBD.,矩形,菱形,正 方 形,平行四边形,正方形是特殊的平行四边形,也是特殊的矩形,也是特殊的菱形.所以矩形、菱形有的性质,正方形都有.,平行四边形、矩形、菱形、正方形之间关系:,性质:1.正方形的四个角都是直角,四条边相等. 2.正方形的对角线相等且互相垂直平分.,归纳总结,正方形是中心对称图形,对角线的交点是它的对称中心. 正方形是轴对称图形,两条对角线所在直线,以及过每一组对边中点的直线都是它的对称轴.,由于正方形既是菱形,又是矩形,因此:,知识要点,A,B,C,D,例1
4、求证: 正方形的两条对角线把这个正方形分成四个全等的等腰直角三角形.,已知: 如图,四边形ABCD是正方形,对角线AC、BD相 交于点O.,求证: ABO、 BCO、 CDO、 DAO是全等的 等腰直角三角形.,证明: 四边形ABCD是正方形, AC=BD,ACBD,AO=BO=CO=DO. ABO、 BCO、 CDO、 DAO都 是等腰直角三角形,并且 ABO BCO CDO DAO.,典例精析,例2 如图,在正方形ABCD中, BEC是等边三角形, 求证: EADEDA15 .,证明: BEC是等边三角形, BE=CE=BC,EBC=ECB=60, 四边形ABCD是正方形, AB=BC=C
5、D,ABC=DCB=90, AB=BE=CE=CD, ABE= DCE=30, ABE,DCE是等腰三角形, BAE= BEA= CDE= CED=75, EAD= EDA=90-75=15.,【变式题1】四边形ABCD是正方形,以正方形ABCD的一边作等边ADE,求BEC的大小,解:当等边ADE在正方形ABCD外部时,如图,ABAE,BAE9060150. AEB15. 同理可得DEC15. BEC60151530;,当等边ADE在正方形ABCD内部时,如图, ABAE,BAE906030, AEB75. 同理可得DEC75. BEC360757560150. 综上所述,BEC的大小为30或
6、150.,易错提醒:因为等边ADE与正方形ABCD有一条公共边,所以边相等本题分两种情况:等边ADE在正方形的外部或在正方形的内部,【变式题2】 如图,在正方形ABCD内有一点P满足AP=AB,PB=PC,连接AC、PD (1)求证:APBDPC;,解:四边形ABCD是正方形, ABC=DCB=90 PB=PC, PBC=PCB ABC-PBC=DCB-PCB, 即ABP=DCP 又AB=DC,PB=PC, APBDPC,证明:四边形ABCD是正方形, BAC=DAC=45 APBDPC, AP=DP 又AP=AB=AD, DP=AP=AD APD是等边三角形 DAP=60 PAC=DAP-D
7、AC=15 BAP=BAC-PAC=30 BAP=2PAC,(2)求证:BAP=2PAC,例3 如图,在正方形ABCD中,P为BD上一点,PEBC于E, PFDC于F.试说明:AP=EF.,解:,连接PC,AC.,又PEBC , PFDC,DCB=90,四边形ABCD是正方形,FCE=90, BD垂直平分AC,四边形PECF是矩形,PC=EF.,AP=PC.,AP=EF.,在正方形的条件下证明两条线段相等:通常连接对角线构造垂直平分的模型,利用垂直平分线性质,角平分线性质,等腰三角形等来说明.,1.正方形具有而矩形不一定具有的性质是 ( ) A.四个角相等 B.对角线互相垂直平分 C.对角互补
8、 D.对角线相等,2.正方形具有而菱形不一定具有的性质( ) A.四条边相等 B.对角线互相垂直平分 C.对角线平分一组对角 D.对角线相等,B,D,练一练,2.如图,四边形ABCD是正方形,对角线AC与BD相交于点O,AO2,求正方形的周长与面积,解:四边形ABCD是正方形, ACBD,OAOD2. 在RtAOD中,由勾股定理,得 正方形的周长为4AD , 面积为AD28.,活动1 准备一张矩形的纸片,按照下图折叠,然后展开,折叠部分得到一个正方形,可量一量验证验证.,正方形,猜想 满足怎样条件的矩形是正方形?,矩形,正方形,一组邻边相等,对角线互相垂直,已知:如图,在矩形ABCD中,AC
9、, DB是它的两条对角线, ACDB. 求证:四边形ABCD是正方形. 证明:四边形ABCD是矩形, AO=CO=BO=DO ,ADC=90. ACDB, AD=AB=BC=CD, 四边形ABCD是正方形.,证一证,A,B,C,D,O,对角线互相垂直的矩形是正方形.,活动2 把可以活动的菱形框架的一个角变为直角,观察这时菱形框架的形状.量量看是不是正方形.,正方形,菱形,猜想 满足怎样条件的菱形是正方形?,正方形,一个角是直角,对角线相等,已知:如图,在菱形ABCD中,AC , DB是它的两条对角线, AC=DB. 求证:四边形ABCD是正方形. 证明:四边形ABCD是菱形, AB=BC=CD
展开阅读全文