基于蚁群算法的物流车辆路径优化问题的研究课件.pptx
- 【下载声明】
1. 本站全部试题类文档,若标题没写含答案,则无答案;标题注明含答案的文档,主观题也可能无答案。请谨慎下单,一旦售出,不予退换。
2. 本站全部PPT文档均不含视频和音频,PPT中出现的音频或视频标识(或文字)仅表示流程,实际无音频或视频文件。请谨慎下单,一旦售出,不予退换。
3. 本页资料《基于蚁群算法的物流车辆路径优化问题的研究课件.pptx》由用户(三亚风情)主动上传,其收益全归该用户。163文库仅提供信息存储空间,仅对该用户上传内容的表现方式做保护处理,对上传内容本身不做任何修改或编辑。 若此文所含内容侵犯了您的版权或隐私,请立即通知163文库(点击联系客服),我们立即给予删除!
4. 请根据预览情况,自愿下载本文。本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
5. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007及以上版本和PDF阅读器,压缩文件请下载最新的WinRAR软件解压。
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 基于 算法 物流 车辆 路径 优化 问题 研究 课件
- 资源描述:
-
1、基于蚁群算法的物流车辆路基于蚁群算法的物流车辆路径优化问题的研究径优化问题的研究01车辆路径规划概述03蚁群算法简介02VRP问题的相关研究04改进的ACO及TSP求解05CVRP问题及求解Contents目录1车辆路径问题概述车辆路径规划概述 车辆路径调度问题是由 G Dantzig 首先提出的,N Christofides 在后来总结深化。车辆路径问题(VRP),主要解决的是派多少辆车走什么样的路线进行运输的问题。具体来讲,就是给定了相互连通的若干有货物需求的顾客点,若干车辆从配送中心出发,完成对所有顾客点的配送任务后回到配送中心,要求所走的路线不能重复,目的是找到最小成本的配送方案。根据
2、实际约束条件的差异,车辆路径问题种类千变万化,并各具特色。经典车辆路径问题,其实就是在车辆路径的调度中,仅仅考虑最基本的货车载重量约束(或容量约束)的最一般化的运输问题,即有容量约束的车辆路径问题(Capacitated Vehicle Routing Problem)。经典VRP要求满足的条件及假设:经典车辆路径问题CVRP123CVRP的数学模型k k:第:第k k辆车辆车 :运输车辆的数量:运输车辆的数量 :车辆:车辆k k所走的路径的集合所走的路径的集合带时间窗的车辆路径问题VRPTW 在很多时候,会要求在一定时间范围内到达顾客点(当然有时配送中心也有时间范围限制),否则将因停车等待或
3、配送延迟而产生损失。比较而言,时间窗VRP除了必须实现经典 VRP 的要求,还要考虑访问时间的限制,这样才能找到合理方案。软时间窗软时间窗VRPVRP:要:要求竟可能在时间窗求竟可能在时间窗内到达访问内到达访问硬时间窗硬时间窗VRPVRP:必:必须在时间窗内到达须在时间窗内到达访问访问VRPTW 的数学模型2VRP问题的相关研究对对VRPVRP问题的相关研究问题的相关研究求解问题的精确算法求解问题的精确算法分支定界法Laporte等人利用VRP和其松弛形式T-VRP之间的关系,把T-VRP转化成了TSP的分枝定界算法求解了一般问题动态规划算法将VRP问题视为一个n阶段的决策问题,进而将其转化为
4、依次求解n个具有递推关系的单阶段决策问题.Eilon通过递归的形式利用动态规划法求解具有固定车辆数的VRP问题三下标车辆流方程由Fisher等人提出,用以求解带能力约束、时间窗口以及无停留时间的VRP问题。在该方程中,两个下标表示弧或边,另一个下标表示车辆的序号。二下标车辆流方程Laporte提出了用以求解对称的一般VRP问题,结合了爬山法的思想,核心依然是线性规划。求解问题的元启发式算法求解问题的元启发式算法禁忌搜索算法由Glover在1986年提出,是一种全局逐步寻优算法,此算法采用禁忌搜索表纪录已达到过的局部最优点,在下一次搜索中对于禁忌表中的节点有选择或是不再选择,以此来避免陷入局部最
5、优解。Gendrean最先用此法解决VRP问题模拟退火算法解决VRP问题时,将物理退火中原子获得的能量相当于分配最优节点,将原子震动模拟为线路寻优空间的随机搜索。(Laporte和Teodorovic)遗传算法Berger和Barkaoui(2004)利用并行混合遗传算法求解带时间窗的车辆路径问题。郎茂祥通过构建单亲遗传算法,有效改进了传统遗传算法对复杂问题搜索效率低,易陷入过早收敛的缺陷。蚁群算法蚁群算法Bullnheimer B.等人首先将蚁群算法的思想用于VRP问题。Bell John.E等提出一种改进的蚁群算法用来求解VRP。Alberbo V等人改进蚁群算法求解TDVRP。刘志硕等人
6、构造了求解的自适应蚁群算法。3蚁群算法简介蚁群算法简史2001年至今1996年-2001年意大利学者Dorigo1991年启发各种改进算法的提出,应用领域更广各种改进算法的提出,应用领域更广 引起学者关注,在应用领域得到拓宽ACO首次被系统的提出首次被系统的提出自然界中真实蚁群集体行为蚁群算法简史蚁群算法简史u蚁群算法(Ant Algorithm)是一种由自然界真实蚂蚁觅食行为提炼而成的优化算法,于1991年,由意大利学者Macro Dorigo在其博士论文中提出,并成功的解决了旅行商(TSP)问题。u1996年,Macro Dorigo等人在IEEE系统、人、控制论汇刊上发表了”Ant sy
7、stem:optimization by a colony of cooperating agents”一文,系统地阐述了蚁群算法的基本原理和数学模型,蚁群算法逐渐引起了世界许多国家研究者的关注,其应用领域也得到了迅速拓宽。u1998年10月在比利时布鲁塞尔召开了第一届蚁群算法国际研讨会(ANTS),标志着蚁群算法的正式国际化。u2000年,Marco Dorigo和Bonabeau E等人在国际顶级学术刊物Nature上发表了蚁群算法的研究综述,从而把这一领域的研究推向了国际数学的最前沿。u在我国,最早关于蚁群算法的研究见于1997年10月张纪会与徐心和发表的论文“一种新的进化算法蚁群算法”
8、中。蚁群算法简史蚁群算法的研究现状蚁群算法的研究现状 目前,人们对蚁群算法的研究已经由当初的TSP领域渗透到多个应用领域,由解决一维静态优化问题发展到解决多维动态优化组合问题,由离散域范围内研究逐渐拓展到了连续域范围内研究。同时在蚁群算法的模型改进以及其他仿生优化算法的融合方面也取得了相当丰富的研究成果,从而使这种新兴的仿生优化算法展现出前所未有的生机。有学者通过对比实验发现,在组合优化问题中,蚁群算法的优化性能要好于遗传算法等算法。蚁群算法是一种基于种群的启发式搜索算法。蚁群算法广泛应用于求解TSP问题,Job-Shop调度问题,二次指派问题,背包问题等。蚁群算法蚁群算法 是一种很有发展前景
9、的优化算法 蚁群算法原理蚁群算法原理蚁群算法原理 蚂蚁能快速找到最佳觅食路径是因为在蚂蚁个体之间是通过一种称为信息素的物质进行信息传递的。蚂蚁在运动过程中,不但能够在它所经过的路径上留下该物质,而且能够感知这种物质的存在及其强度,并朝着该物质强度高的方向移动,以此指导自己的运动方向。因此,由大量蚂蚁组成的蚁群集体行为表现出一种信息正反馈现象。在一定时间内较短路径通过的蚂蚁要多于较长路径,而某一路径上走过的蚂蚁越多,则后来的蚂蚁选择该路径的概率就越大。下图是一个形象化的图示,用以说明蚁群的路径搜索过程蚂蚁觅食协作本质可概括成如下三点:路径概率选择机制:信息素踪迹越浓的路径,被选中的概率越大;信息
展开阅读全文