书签 分享 收藏 举报 版权申诉 / 46
上传文档赚钱

类型多元回归分析2课件.ppt

  • 上传人(卖家):三亚风情
  • 文档编号:3338759
  • 上传时间:2022-08-21
  • 格式:PPT
  • 页数:46
  • 大小:587.51KB
  • 【下载声明】
    1. 本站全部试题类文档,若标题没写含答案,则无答案;标题注明含答案的文档,主观题也可能无答案。请谨慎下单,一旦售出,不予退换。
    2. 本站全部PPT文档均不含视频和音频,PPT中出现的音频或视频标识(或文字)仅表示流程,实际无音频或视频文件。请谨慎下单,一旦售出,不予退换。
    3. 本页资料《多元回归分析2课件.ppt》由用户(三亚风情)主动上传,其收益全归该用户。163文库仅提供信息存储空间,仅对该用户上传内容的表现方式做保护处理,对上传内容本身不做任何修改或编辑。 若此文所含内容侵犯了您的版权或隐私,请立即通知163文库(点击联系客服),我们立即给予删除!
    4. 请根据预览情况,自愿下载本文。本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
    5. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007及以上版本和PDF阅读器,压缩文件请下载最新的WinRAR软件解压。
    配套讲稿:

    如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。

    特殊限制:

    部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。

    关 键  词:
    多元 回归 分析 课件
    资源描述:

    1、一、多元线性回归的数学模型一、多元线性回归的数学模型二、数学模型的分析与求解二、数学模型的分析与求解三、三、MATLAB中回归分析的实现中回归分析的实现四、小结四、小结多元线性回归多元线性回归.)1(,21有关有关通常与多个普通变量通常与多个普通变量实际问题中的随机变量实际问题中的随机变量 pxxxYp.,2121的函数的函数则它是则它是的数学期望存在的数学期望存在若若定的分布定的分布具有一具有一的一组确定值的一组确定值对于自变量对于自变量ppxxxYYxxx),(21,21pxxxYxxxp 的回归函数的回归函数关于关于 xY一、多元线性回归的数学模型一、多元线性回归的数学模型.,),(21

    2、21的线性函数的线性函数是是ppxxxxxx).,0(,2110 NxbxbbYpp .,1210无关的未知参数无关的未知参数是与是与ppxxbbb 多元线性回归模型多元线性回归模型.),(,),(21111211是一个样本是一个样本设设nnpnnpyxxxyxxx用最大似然估计法估计参数用最大似然估计法估计参数.,110010时时当当取取pppbbbbbbbbb niippiixbxbbyQ12110)(达到最小达到最小.二、数学模型的分析与求解二、数学模型的分析与求解,)(12110 niippiixbxbbyQ .,2,1,0)(2 ,0)(2111011100pjxxbxbbybQxb

    3、xbbybQniijippiijniippii化简可得化简可得 .,11212211110111112121211110111221110niiipniippniiipniiipniipniiiniipipniiiniiniiniiniippniiniiyxxbxxbxxbxbyxxxbxxbxbxbyxbxbxbnb正规方程组正规方程组引入矩阵引入矩阵,111212222111211 npnnppxxxxxxxxxX,21 nyyyY.10 pbbbB正规方程组的矩阵形式正规方程组的矩阵形式YXXBX YXXXbbbBp)(110 最大似然估计值最大似然估计值ppxbxbxbby22110

    4、的估计是的估计是pppxbxbbxxx 11021),(P元经验线性回归方程元经验线性回归方程多元线性回归多元线性回归1.确定回归系数的点估计值确定回归系数的点估计值,用命令用命令:b=regress(Y,X)2.求回归系数的点估计和区间估计求回归系数的点估计和区间估计,并检验回并检验回归模型归模型,用命令用命令:b,bint,r,rint,stats=regress(Y,X,alpha)3.画出残差及其置信区间画出残差及其置信区间,用命令用命令:rcoplot(r,rint)三、三、MATLAB中回归分析的实现中回归分析的实现符号说明符号说明(1),111212222111211 npnnp

    5、pxxxxxxxxxX,21 nyyyY.)(110YXXXbbbBbp .1,p取取一元线性回归一元线性回归(2)alpha为显著性水平为显著性水平,默认为默认为 0.05;(3)bint为回归系数的区间估计为回归系数的区间估计;(4)r与与rint分别为残差及其置信区间分别为残差及其置信区间;(5)stats 是用于检验回归模型的统计量是用于检验回归模型的统计量,有三个有三个数值数值,第一个是相关系数第一个是相关系数 r2,其值越接近于其值越接近于 1,说明回说明回归方程越显著归方程越显著;第二个是第二个是 F 值值,FF1-alpha(p,n-p-1)时时拒绝拒绝 H0,F 越大越大,说

    6、明回归方程越显著说明回归方程越显著;第三个是与第三个是与F对应的概率对应的概率 p,p p=polyfit(x,y,2)p=0.0001 -0.0225 2.1983Y=polyval(p,x)Y=1.7978 1.7134 1.6352 1.5632 1.4975 1.3848 1.2972 1.2627 1.2345 1.2126 1.1969 1.1843预测及作图预测及作图Y=polyconf(p,x,y)plot(x,y,b+,x,Y,r)Y=polyconf(p,x,y)Y=1.7978 1.7134 1.6352 1.5632 1.4975 1.3848 1.2972 1.262

    7、7 1.2345 1.2126 1.1969 1.1843预测及作图预测及作图polytool(x,y,2)预测及作图预测及作图polytool(x,y,2)p,S=polyfit(x,y,2);Y,DELTA=polyconf(p,x,S,0.05)Y=1.7978 1.7134 1.6352 1.5632 1.4975 1.3848 1.2972 1.2627 1.2345 1.2126 1.1969 1.1843 DELTA=0.0335 0.0311 0.0299 0.0296 0.0297 0.0302 0.0302 0.0299 0.0297 0.0297 0.0305 0.035

    8、4化为多元线性回归化为多元线性回归X=ones(12,1)x(x.2);X=1 20 400 1 25 625 1 30 900 1 35 1225 1 40 1600 1 50 2500 1 60 3600 1 65 4225 1 70 4900 1 75 5625 1 80 6400 1 90 8100化为多元线性回归化为多元线性回归X=ones(12,1)x(x.2);b,bint,r,rint,stats=regress(y,X);b,stats与前面的结果一致与前面的结果一致.多元二项式回归多元二项式回归rstool(x,y,model,alpha)其中其中,输入数据输入数据 x,y

    9、 分别为分别为 nm 矩阵和矩阵和 n 维列维列向量向量;alpha 为显著性水平为显著性水平,默认为默认为 0.05;model 为下为下列四种模型中的一种列四种模型中的一种,输入相应的字符串输入相应的字符串,默认为默认为线性模型线性模型.mmxxy 110:)(线性线性linearticpurequadra:)(纯二次纯二次 mjjjjmmxxxy12110 ninteractio:)(交叉交叉 mmkjkjjkmmxxxxy1110 quadratic:)(完全二次完全二次 mmkjkjjkmmxxxxy,1110 rstool的输出是一个交互式画面的输出是一个交互式画面,画面中有画面中

    10、有m个个图形图形,分别给出了一个独立变量分别给出了一个独立变量xi与与y的拟合曲线的拟合曲线,以及以及y的置信区间的置信区间,此时其余此时其余m-1个变量取固定值个变量取固定值.可可以输入不同的变量的不同值得到以输入不同的变量的不同值得到y的相应值的相应值.图的左下方有两个下拉式菜单图的左下方有两个下拉式菜单,一个用于传送一个用于传送回归系数、剩余标准差、残差等数据回归系数、剩余标准差、残差等数据;另一个用于另一个用于选择四种回归模型中的一种选择四种回归模型中的一种,选择不同的回归模型选择不同的回归模型,其中剩余标准差最接近于零的模型回归效果最好其中剩余标准差最接近于零的模型回归效果最好.例例

    11、3设某商品的需求量与消费者的平均收入、商设某商品的需求量与消费者的平均收入、商品价格的统计数据如下品价格的统计数据如下,建立回归模型建立回归模型,预测平均收预测平均收入为入为 1000,价格为价格为 6 时的商品需求量时的商品需求量.选择纯二次模型选择纯二次模型,即即2222211122110 xxxxy 数据输入数据输入x1=1000,600,1200,500,300,400,1300,1100,1300,300;x2=5,7,6,6,8,7,5,4,3,9;y=100,75,80,70,50,65,90,100,110,60;x=x1 x2;回归、检验与预测回归、检验与预测rstool(x

    12、,y,purequadratic)化为多元线性回归求解化为多元线性回归求解x1=1000,600,1200,500,300,400,1300,1100,1300,300;x2=5,7,6,6,8,7,5,4,3,9;y=100,75,80,70,50,65,90,100,110,60;X=ones(10,1)x1 x2(x1.2)(x2.2);b,bint,r,rint,stats=regress(y,X)回归系数的点估计以及区间估计回归系数的点估计以及区间估计残差及其置信区间残差及其置信区间检验回归模型的统计量检验回归模型的统计量;1,9702.02回归方程显著回归方程显著接近于接近于相关系

    13、数相关系数 r;,26.6)5,4(6656.4095.0回归方程显著回归方程显著 FF.,05.00005.0回归模型成立回归模型成立 P逐步回归分析逐步回归分析在实际问题中在实际问题中,影响因变量的因素很多影响因变量的因素很多,而这些而这些因素之间可能存在多重共线性因素之间可能存在多重共线性.为得到可靠的回归为得到可靠的回归模型模型,需要一种方法能有效地从众多因素中挑选出需要一种方法能有效地从众多因素中挑选出对因变量贡献大的因素对因变量贡献大的因素.如果采用多元线性回归分析如果采用多元线性回归分析,回归方程稳定性回归方程稳定性差差,每个自变量的区间误差积累将影响总体误差每个自变量的区间误差

    14、积累将影响总体误差,预预测的可靠性差、精度低测的可靠性差、精度低;另外另外,如果采用了影响小的如果采用了影响小的变量变量,遗漏了重要变量遗漏了重要变量,可能导致估计量产生偏倚和可能导致估计量产生偏倚和不一致性不一致性.选择选择“最优最优”回归方程的方法回归方程的方法1.从所有可能的变量组合的回归方程中选择从所有可能的变量组合的回归方程中选择最优者最优者;2.从包含全部变量的回归方程中逐次剔除不从包含全部变量的回归方程中逐次剔除不显著因子显著因子;3.从一个变量开始从一个变量开始,把变量逐个引入方程把变量逐个引入方程;4.“有进有出有进有出”的逐步回归分析的逐步回归分析.“最优最优”的回归方程应

    15、该包含所有有影响的的回归方程应该包含所有有影响的变量而不包括影响不显著的变量变量而不包括影响不显著的变量.逐步回归分析法逐步回归分析法在筛选变量方面比较理想在筛选变量方面比较理想,是是目前较常用的方法目前较常用的方法.它从一个自变量开始它从一个自变量开始,根据自变根据自变量作用的显著程度量作用的显著程度,从大到小地依次逐个引入回归从大到小地依次逐个引入回归方程方程,但当引入的自变量由于后面变量的引入而变但当引入的自变量由于后面变量的引入而变得不显著时得不显著时,要将其剔除掉要将其剔除掉.引入一个自变量或从回引入一个自变量或从回归方程中剔除一个自变量归方程中剔除一个自变量,为逐步回归的一步为逐步

    16、回归的一步,对于对于每一步每一步,都进行检验都进行检验,以确保每次引入新的显著性变以确保每次引入新的显著性变量前回归方程中只包含作用显著的变量量前回归方程中只包含作用显著的变量.反复进行上面的过程反复进行上面的过程,直到没有不显著的变量直到没有不显著的变量从回归方程中剔除从回归方程中剔除,也没有显著变量可引入到回归也没有显著变量可引入到回归方程方程.函数函数:stepwise用法用法:stepwise(x,y,inmodel,alpha)符号说明符号说明:x自变量数据自变量数据,为为nm矩阵矩阵;y因变量数据因变量数据,为为n1矩阵矩阵;inmodel由矩阵由矩阵x列的指标构成列的指标构成,表

    17、明初始模表明初始模型中引入的自变量型中引入的自变量,默认为全部自变量默认为全部自变量;alpha判断模型中每一项显著性的指标判断模型中每一项显著性的指标,默默认相当于对回归系数给出认相当于对回归系数给出95%的置信区间的置信区间.例例4水泥凝固时放出的热量水泥凝固时放出的热量 y 与水泥中的四种化与水泥中的四种化学成分学成分 x1,x2,x3,x4 有关有关,今测得一组数据如下今测得一组数据如下,试试用逐步回归法确定一个线性模型用逐步回归法确定一个线性模型.x1=7,1,11,11,7,11,3,1,2,21,1,11,10;x2=26,29,56,31,52,55,71,31,54,47,4

    18、0,66,68;x3=6,15,8,8,6,9,17,22,18,4,23,9,8;x4=60,52,20,47,33,22,6,44,22,26,34,12,12;y=78.5,74.3,104.3,87.6,95.9,109.2,102.7,72.5,93.1,115.9,83.8,113.3,109.4;x=x1,x2,x3,x4;输入数据输入数据stepwise(x,y)逐步回归分析逐步回归分析stepwise(x,y)逐步回归分析逐步回归分析对变量对变量 y 和和 x1,x2,x3,x4,作线性回归作线性回归.X=ones(13,1),x1,x2,x3,x4;b,bint,r,rin

    19、t,stats=regress(y,X)b=62.4054 1.5511 0.5102 0.1019 -0.1441 bint=-99.1786 223.9893 -0.1663 3.2685 -1.1589 2.1792 -1.6385 1.8423 -1.7791 1.4910 r=0.0048 1.5112 -1.6709 -1.7271 0.2508 3.9254 -1.4487 -3.1750 1.3783 0.2815 1.9910 0.9730 -2.2943 rint=-4.0390 4.0485 -3.2331 6.2555 -5.3126 1.9707 -6.5603 3.

    20、1061 -4.5773 5.0788 -0.5623 8.4132 -6.0767 3.1794 -6.8963 0.5463 -3.5426 6.2993 -3.0098 3.5729 -2.2372 6.2191 -4.1338 6.0797 -6.9115 2.3228stats=0.9824 111.4792 0.0000 5.9830对变量对变量 y 和和 x1,x2 作线性回归作线性回归.X=ones(13,1),x1,x2;b,bint,stats=regress(y,X)回归模型为回归模型为,6623.04683.15773.5221xxy 三个统计量表明三个统计量表明:回归

    21、效果显著回归效果显著.对变量对变量 y 和和 x1,x2 作线性回归作线性回归.x=x1,x2;stepwise(x,y)四、小结四、小结1.多元线性回归的数学模型多元线性回归的数学模型2.数学模型的分析与求解数学模型的分析与求解).,0(,2110 NxbxbbYpp .,1210无关的未知参数无关的未知参数是与是与ppxxbbb,)(1YXXXB .22110ppxbxbxbby 3.MATLAB中回归分析的实现中回归分析的实现(1)多元线性回归多元线性回归b=regress(Y,X)(2)一元多项式回归一元多项式回归p,S=polyfit(x,y,m)(3)多元二项式回归多元二项式回归rstool(x,y,model,alpha)(4)逐步回归分析逐步回归分析stepwise(x,y,inmodel,alpha)

    展开阅读全文
    提示  163文库所有资源均是用户自行上传分享,仅供网友学习交流,未经上传用户书面授权,请勿作他用。
    关于本文
    本文标题:多元回归分析2课件.ppt
    链接地址:https://www.163wenku.com/p-3338759.html

    Copyright@ 2017-2037 Www.163WenKu.Com  网站版权所有  |  资源地图   
    IPC备案号:蜀ICP备2021032737号  | 川公网安备 51099002000191号


    侵权投诉QQ:3464097650  资料上传QQ:3464097650
       


    【声明】本站为“文档C2C交易模式”,即用户上传的文档直接卖给(下载)用户,本站只是网络空间服务平台,本站所有原创文档下载所得归上传人所有,如您发现上传作品侵犯了您的版权,请立刻联系我们并提供证据,我们将在3个工作日内予以改正。

    163文库