书签 分享 收藏 举报 版权申诉 / 28
上传文档赚钱

类型小波理论及小波滤波去噪方法课件.ppt

  • 上传人(卖家):三亚风情
  • 文档编号:3333760
  • 上传时间:2022-08-20
  • 格式:PPT
  • 页数:28
  • 大小:617.50KB
  • 【下载声明】
    1. 本站全部试题类文档,若标题没写含答案,则无答案;标题注明含答案的文档,主观题也可能无答案。请谨慎下单,一旦售出,不予退换。
    2. 本站全部PPT文档均不含视频和音频,PPT中出现的音频或视频标识(或文字)仅表示流程,实际无音频或视频文件。请谨慎下单,一旦售出,不予退换。
    3. 本页资料《小波理论及小波滤波去噪方法课件.ppt》由用户(三亚风情)主动上传,其收益全归该用户。163文库仅提供信息存储空间,仅对该用户上传内容的表现方式做保护处理,对上传内容本身不做任何修改或编辑。 若此文所含内容侵犯了您的版权或隐私,请立即通知163文库(点击联系客服),我们立即给予删除!
    4. 请根据预览情况,自愿下载本文。本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
    5. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007及以上版本和PDF阅读器,压缩文件请下载最新的WinRAR软件解压。
    配套讲稿:

    如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。

    特殊限制:

    部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。

    关 键  词:
    理论 滤波 方法 课件
    资源描述:

    1、第九章小波理论及小波滤波去噪方法第九章小波理论及小波滤波去噪方法0 引言引言9.1 从傅里叶变换到小波分析从傅里叶变换到小波分析9.2 小波变换小波变换第1页,共28页。第九章 小波理论及小波滤波去噪方法 目前,信号处理已经变成 了当代科学技术发展的重要部分。对新红进行分析或分解是了解和掌握信号特征和性质的基本方法。在信号分析中,变换就是寻求对于信号的另一种表示,使得比较复杂的、特征不够明确的信号在变换后的形式下变得简洁和特征明确。信号有两类:一类是稳定变化的信号;另一类是具有突变性质的、非稳定变化的型号。对于稳定变化的信号,知识研究线性不变算子,工程商最常使用的一种变换傅里叶变换0 前言第2

    2、页,共28页。第九章 小波理论及小波滤波去噪方法傅里叶变换 1807年,傅里叶提出任何函数都能用一组正余弦函数的和来表示,其最直接的影响就是再数学分析领域中的应用。傅里叶变换是将信号分解呈不同频率的数学方法。它可以将时域中某一信号变换至频域中,并予以定量认识和分析,还能描述信号的整体频谱特征。因此傅里叶变换是众多科学领域(特别是信号处理、图形处理、量子物理等)里重要的应用工具之一。第3页,共28页。第九章 小波理论及小波滤波去噪方法傅里叶变换傅里叶逆变换u f(t)表示时间信号或函数,其中t表示时间域自变量,对应的F(w)表示相应环视或信号的傅里叶变换,w表示频域自变量第4页,共28页。第九章

    3、 小波理论及小波滤波去噪方法u 傅里叶变换属于谐波分析;u 正弦基函数是微分运算的本征函数,从而使得线性微分方程 的求解可以转化为常系数的代数方程的求解。在线性时不变 的物理系统内,频率是个不变的性质,从而系统对于复杂激 励的响应可以通过组合其对不同频率正弦信号的响应来获取u 卷积定理指出:傅里叶变换可以化复杂的卷积运算为简单的 乘积运算,从而提供了计算卷积的一种简单手段;u 离散形式的傅里叶变换可以利用数字计算机快速地算出(其 算法称为快速傅里叶变换算法。傅里叶变换特点第5页,共28页。第九章 小波理论及小波滤波去噪方法9.1.1短时傅里叶变换 傅里叶变换能提取出函数在整个频率轴上的频率信息

    4、,却不能反映信号在局部时间范围内的特征。(因为傅里叶变换的积分作用平滑了非平稳信号的突变部分)。然而对于变频信号如音乐、地震信号、雷达回波等,此时所关心的是什么时刻奏什么音符,发出什么样的音节;对地震信号,人们所关心的是在什么位置出现什么样的反射波。假设用傅里叶变换非平稳信号,则不能提供完全的信息,即通过傅里叶变换可以知道信号所含有的频率信息,但是无法知道这些频率信息究竟出现在哪些时间段上。这样 在信号分析中面临一对最基本的矛盾:时域和频域的局部化矛盾。第6页,共28页。它们的频域特性都随时间而变化。分析它需要提取某一时间段的频域它们的频域特性都随时间而变化。分析它需要提取某一时间段的频域信息

    5、或某一频率段所对应的时间信息信息或某一频率段所对应的时间信息实际采集的地震信号第7页,共28页。第九章 小波理论及小波滤波去噪方法9.1.1短时傅里叶变换 为了克服傅里叶分析的局限性,使其对非平稳信号也能作较好的分析,通过对信号在时域上加一个窗函数,使其对信号进行乘积运算以实现在套附近的开窗和平移,再对加窗的信号进行傅里叶分析,这就是短时傅里叶变换(short-time Fourier transform,简称STFT),或者加窗傅里叶变换。采用高斯函数作为窗口函数,其相应的傅里叶变换仍旧是高斯函数,从而使短时傅里叶变换在时域和频域内均有局域化功能第8页,共28页。第九章 小波理论及小波滤波去

    6、噪方法9.1.1短时傅里叶变换 STFT的基本思想是:把信号划分成许多小的时间间隔,用傅里叶变换分析每一个时间间隔,以便确定该时间间隔存在的频率。其表达式为其中公式上角“*”表示复共轭,g(t)是有紧支集的函数,f(t)为进入分析的信号,在这个变换中,于傅里叶变换的基函数前乘上一个时间上有限的时限函数g(t)(窗函数),然后将其作为分析工具,这样e-iwt起频限作用,g(t)起时限作用,合在一起起时频分析作用。第9页,共28页。第九章 小波理论及小波滤波去噪方法 其中公式上角“*”表示复共轭,g(t)是有紧支集的函数,f(t)为进入分析的信号,在这个变换中,于傅里叶变换的基函数前乘上一个时间上

    7、有限的时限函数g(t)(窗函数),然后将其作为分析工具,这样e-iwt起频限作用,g(t)起时限作用,合在一起起时频分析作用。随着时间的变化,g(t)所确定的“时间窗”在t轴上移动,使f(t)“逐渐”进行分析。大致反映了f(t)在时刻“”时,频率为“w”的“信号成分”的相对含量。第10页,共28页。第九章 小波理论及小波滤波去噪方法这样信号在窗函数上的展开就可以表示为在-,+、w-,w+这一区域内的状态,并把这一区域称为窗口,分别称为窗口的时宽和频宽,表示了时域分析中的分辨率,窗宽越小则分辨率就越高。很显然,希望,都非常小,以便有更好的时频分辨效果,但海森堡测不准原理指出,是互相制约的,两者不

    8、可能同时都任意小。第11页,共28页。第九章 小波理论及小波滤波去噪方法 由此可见,STFT虽然在一定程度上克服了标准傅里叶变换不具有时域局部分析能力的缺陷,但他也存在着自身不可克服的缺陷其时间频率窗口是固定不变的,一旦窗口函数选定其时频分辨率也就确定了。而时间和频率的最高分辨率受制约,任一方分辨率的提高都意味着另一方分辨率的降低。可以说STFT实质上是具有单一分辨率的信号分析方法,若要改变分辨率,则必须重新选择窗口函数g(t)。因此STFT用来分析平稳信号犹可,但对非平稳信号,在信号波形变化剧烈的时刻,主频是高频,要求有较高的时间分辨率,即要小,而波形变化比较平缓的时刻,主频是低频,则要求有

    9、较高的频率分辨率,要小,而STFT不能兼顾二者。第12页,共28页。第九章 小波理论及小波滤波去噪方法 对实际时变信号的分析需要时频窗口具有自适应性;对于高频谱的信息时间间隔要相对的小以给出很高的精度;对于低频谱的信息,时间间隔要相对的宽以给出完全的信息。重要的是要有一个灵活可变的时间频率窗。而小波便是为此而设计的。第13页,共28页。第九章 小波理论及小波滤波去噪方法 小波分析,是当前数学中一个迅速发展新领域,它同时具有理论深刻和应用广泛的双重含义。他是一种窗口大小(即窗口面积)固定但其形状可改变、时间窗和频率窗都可以改变的时频局部化分析方法,即在低频部分具有较高的频率分辨率和较低的时间分辨

    10、率,在高频部分具有较高的时间分辨率和较低的频率分辨率,所以被誉为“数学显微镜”第14页,共28页。第九章 小波理论及小波滤波去噪方法 与傅里叶变换、STFT相比,这是一个时间和频率的局域变换,因而能有效的从信号中提取信息,通过伸缩和平移等运算功能对函数或信号进行多尺度细化分析,解决了傅里叶变换不能解决的许多困难问题,他是调和分析发展史上里程碑式的进展。(1)继承和发展了STFT的局部化思想。(2)克服了窗口大小不随频率变化、缺乏离散正交基的缺点。第15页,共28页。第九章 小波理论及小波滤波去噪方法第16页,共28页。9.2.1小波变换定义及特点 小波(小波(Wavelet),即小区域的波,是

    11、一种特殊的长),即小区域的波,是一种特殊的长度有限、平均值为度有限、平均值为0的波形。的波形。特点:(特点:(1)“小小”,即在时域都具有紧支集或,即在时域都具有紧支集或 近似紧支集近似紧支集 (2)正负交替的)正负交替的“波动性波动性”,也即直流,也即直流 分量为零分量为零第九章 小波理论及小波滤波去噪方法第17页,共28页。9.2.1小波变换定义及特点第九章 小波理论及小波滤波去噪方法第18页,共28页。u傅立叶分析所用的正弦波在时间上没有限制,从负无穷到正无穷,但小傅立叶分析所用的正弦波在时间上没有限制,从负无穷到正无穷,但小波倾向于不规则与不对称。波倾向于不规则与不对称。uFT将信号分

    12、解成一系列不同频率正弦波的叠加,小波分析是将信号分将信号分解成一系列不同频率正弦波的叠加,小波分析是将信号分解成一系列小波函数的叠加。而这些小波函数都是由一个母小波函数解成一系列小波函数的叠加。而这些小波函数都是由一个母小波函数经过平移与尺度伸缩得来的。经过平移与尺度伸缩得来的。u用不规则的小波函数来逼近尖锐变化的信号显然要比光滑的正弦用不规则的小波函数来逼近尖锐变化的信号显然要比光滑的正弦曲线要好,同样,信号局部的特性用小波函数来逼近显然要比光曲线要好,同样,信号局部的特性用小波函数来逼近显然要比光滑的正弦函数来逼近要好。滑的正弦函数来逼近要好。9.2.1小波变换定义及特点第九章 小波理论及

    13、小波滤波去噪方法第19页,共28页。20连续小波变换(Continuous Wavelet Transform,CWT)用下式表示:(,)()(,)scale positionf tscale positionCt dt表示小波变换是信号f(x)与被缩放和平移的小波函数()之积在信号存在的整个期间里求和的结果。CWT的变换结果是许多小波系数C,这些系数是缩放因子(scale)和平移(position)的函数。9.2.2连续小波变换第九章 小波理论及小波滤波去噪方法第20页,共28页。(1 1)连续小波函数定义:)连续小波函数定义:设设 ,则下面的函数族,则下面的函数族 叫小波分析或连续小波,叫

    14、小波分析或连续小波,叫基本小波或小波。叫基本小波或小波。若若 是窗函数,就叫为窗口小波函数,一般我是窗函数,就叫为窗口小波函数,一般我们恒假定们恒假定 为窗口小波函数。为窗口小波函数。0012且LLba,abtatba21,0,RaRb第九章 小波理论及小波滤波去噪方法9.2.2连续小波变换第21页,共28页。22(2)缩放。就是压缩或伸展基本小波,缩放系数越小,则小波越窄第九章 小波理论及小波滤波去噪方法OOOf(t)f(t)f(t)tttf(t)(t);scale1f(t)(2t);scale0.5f(t)(4t);scale0.259.2.2连续小波变换第22页,共28页。23第九章 小

    15、波理论及小波滤波去噪方法(3)平移。小波的延迟或超前。在数学上,函数f(t)延迟k的表达式为f(t-k),(a)小波函数(t);(b)位移后的小波函数(t-k)9.2.2连续小波变换第23页,共28页。24(4 4)小波变换的步骤)小波变换的步骤:第一步:第一步:取一个小波与信号的最前面部分比较取一个小波与信号的最前面部分比较;第二步:第二步:计算相关因子计算相关因子C,C代表小波和这段数据的相关性代表小波和这段数据的相关性 即即:C越大越大,两者越相似两者越相似;第九章 小波理论及小波滤波去噪方法9.2.2连续小波变换第24页,共28页。25 第三步:移动小波第三步:移动小波,重复步骤一和二

    16、重复步骤一和二,一直遍历整个数据一直遍历整个数据;第九章 小波理论及小波滤波去噪方法9.2.2连续小波变换第25页,共28页。26(5)小波尺度和信号频率的关系小尺度 信号的高频大尺度 信号的低频第九章 小波理论及小波滤波去噪方法9.2.2连续小波变换第26页,共28页。1 1)双域性:小波分析是时频分析,可在时域和频域两个域内揭示信)双域性:小波分析是时频分析,可在时域和频域两个域内揭示信号的特征,但与号的特征,但与STFTSTFT相比,又具有优越的时频窗。在海森堡测不准相比,又具有优越的时频窗。在海森堡测不准原理的约束下,频率较高时,它具有较宽的频率窗;而在频率较低原理的约束下,频率较高时

    17、,它具有较宽的频率窗;而在频率较低时,它就有较宽的时间窗。时,它就有较宽的时间窗。2 2)灵活性:小波基函数不是唯一的,只要满足小波的允许条件即)灵活性:小波基函数不是唯一的,只要满足小波的允许条件即可,因而就可以有许多构造小波的方法。不同小波有不同的特性可,因而就可以有许多构造小波的方法。不同小波有不同的特性。可分别用来逼近不同性质的信号,以便得到最佳结果。而傅里。可分别用来逼近不同性质的信号,以便得到最佳结果。而傅里叶函数只用正弦函数去逼近任意信号,没有选择余地。叶函数只用正弦函数去逼近任意信号,没有选择余地。第九章 小波理论及小波滤波去噪方法9.2.2连续小波变换第27页,共28页。3)快速性:由于有了多分辨率分析这一工具,大大提高了小波分析的)快速性:由于有了多分辨率分析这一工具,大大提高了小波分析的效率效率4)尺度转换性:若)尺度转换性:若f(t)的的CWT是是 ,则,则f(t/)的的CWT为为 表明信号函数表明信号函数f(t)作某一伸缩时,其作某一伸缩时,其CWT将在将在a,b两轴上两轴上 作同作同一比例的伸缩,且不发生失真变形。一比例的伸缩,且不发生失真变形。9.2.2连续小波变换第九章 小波理论及小波滤波去噪方法0,/,/baWfbaWf,第28页,共28页。

    展开阅读全文
    提示  163文库所有资源均是用户自行上传分享,仅供网友学习交流,未经上传用户书面授权,请勿作他用。
    关于本文
    本文标题:小波理论及小波滤波去噪方法课件.ppt
    链接地址:https://www.163wenku.com/p-3333760.html

    Copyright@ 2017-2037 Www.163WenKu.Com  网站版权所有  |  资源地图   
    IPC备案号:蜀ICP备2021032737号  | 川公网安备 51099002000191号


    侵权投诉QQ:3464097650  资料上传QQ:3464097650
       


    【声明】本站为“文档C2C交易模式”,即用户上传的文档直接卖给(下载)用户,本站只是网络空间服务平台,本站所有原创文档下载所得归上传人所有,如您发现上传作品侵犯了您的版权,请立刻联系我们并提供证据,我们将在3个工作日内予以改正。

    163文库