感光性高分子概述课件.ppt
- 【下载声明】
1. 本站全部试题类文档,若标题没写含答案,则无答案;标题注明含答案的文档,主观题也可能无答案。请谨慎下单,一旦售出,不予退换。
2. 本站全部PPT文档均不含视频和音频,PPT中出现的音频或视频标识(或文字)仅表示流程,实际无音频或视频文件。请谨慎下单,一旦售出,不予退换。
3. 本页资料《感光性高分子概述课件.ppt》由用户(三亚风情)主动上传,其收益全归该用户。163文库仅提供信息存储空间,仅对该用户上传内容的表现方式做保护处理,对上传内容本身不做任何修改或编辑。 若此文所含内容侵犯了您的版权或隐私,请立即通知163文库(点击联系客服),我们立即给予删除!
4. 请根据预览情况,自愿下载本文。本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
5. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007及以上版本和PDF阅读器,压缩文件请下载最新的WinRAR软件解压。
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 感光性 高分子 概述 课件
- 资源描述:
-
1、1第六章第六章 感光性高分子感光性高分子1 概述概述 感光性高分子是指在吸收了光能后,能在分子感光性高分子是指在吸收了光能后,能在分子内或分子间产生化学、物理变化的一类功能高分子内或分子间产生化学、物理变化的一类功能高分子材料。而且这种变化发生后,材料将输出其特有的材料。而且这种变化发生后,材料将输出其特有的功能。从广义上讲,按其输出功能,感光性高分子功能。从广义上讲,按其输出功能,感光性高分子包括包括光导电材料、光电转换材料、光能储存材料、光导电材料、光电转换材料、光能储存材料、光记录材料、光致变色材料和光致抗蚀材料光记录材料、光致变色材料和光致抗蚀材料等。等。2 其中开发比较成熟并有实用价
2、值的感光性高分其中开发比较成熟并有实用价值的感光性高分子材料主要是指子材料主要是指光致抗蚀材料和光致诱蚀材料光致抗蚀材料和光致诱蚀材料,产,产品包括品包括光刻胶、光固化粘合剂、感光油墨、感光涂光刻胶、光固化粘合剂、感光油墨、感光涂料料等。等。本章中主要光致抗蚀材料和光致诱蚀材料。本章中主要光致抗蚀材料和光致诱蚀材料。感感电子束和感电子束和感X射线高分子射线高分子在本质上与感光高分子相在本质上与感光高分子相似,故略作介绍。似,故略作介绍。光导电材料和光电转换材料光导电材料和光电转换材料归属归属于导电高分子一类,本章不作介绍。于导电高分子一类,本章不作介绍。第六章第六章 感光性高分子感光性高分子3
3、 所谓光致抗蚀,是指高分子材料经过光照后,所谓光致抗蚀,是指高分子材料经过光照后,分子结构从线型可溶性转变为分子结构从线型可溶性转变为网状不可溶性网状不可溶性,从而,从而产生了对溶剂的抗蚀能力。而光致诱蚀正相反,当产生了对溶剂的抗蚀能力。而光致诱蚀正相反,当高分子材料受光照辐射后,感光部分发生高分子材料受光照辐射后,感光部分发生光分解光分解反反应,从而变为可溶性。如目前广泛使用的应,从而变为可溶性。如目前广泛使用的预涂感光预涂感光版版,就是将感光材料树脂预先涂敷在亲水性的基材,就是将感光材料树脂预先涂敷在亲水性的基材上制成的。晒印时,树脂若发生光交联反应,则溶上制成的。晒印时,树脂若发生光交联
4、反应,则溶剂显像时未曝光的树脂被溶解,感光部分树脂保留剂显像时未曝光的树脂被溶解,感光部分树脂保留了下来。反之,晒印时若发生光分解反应,则曝光了下来。反之,晒印时若发生光分解反应,则曝光部分的树脂分解成可溶解性物质而溶解。部分的树脂分解成可溶解性物质而溶解。第六章第六章 感光性高分子感光性高分子4 作为感光性高分子材料,应具有一些基本的性作为感光性高分子材料,应具有一些基本的性能,如能,如对光的敏感性、成像性、显影性、膜的物理对光的敏感性、成像性、显影性、膜的物理化学性能化学性能等。但对不同的用途,要求并不相同。如等。但对不同的用途,要求并不相同。如作为电子材料及印刷制版材料,对感光高分子的成
5、作为电子材料及印刷制版材料,对感光高分子的成像特性要求特别严格;而对粘合剂、油墨和涂料来像特性要求特别严格;而对粘合剂、油墨和涂料来说,感光固化速度和涂膜性能等则显得更为重要。说,感光固化速度和涂膜性能等则显得更为重要。第六章第六章 感光性高分子感光性高分子5 光刻胶是微电子技术中细微图形加工的关键材光刻胶是微电子技术中细微图形加工的关键材料之一。特别是近年来大规模和超大规模集成电路料之一。特别是近年来大规模和超大规模集成电路的发展,更是大大促进了光刻胶的研究和应用。的发展,更是大大促进了光刻胶的研究和应用。印刷工业是光刻胶应用的另一重要领域。印刷工业是光刻胶应用的另一重要领域。1954年首先
6、研究成功的年首先研究成功的聚乙烯醇肉桂酸酯聚乙烯醇肉桂酸酯就是首先用于就是首先用于印刷技术,以后才用于电子工业的。与传统的制版印刷技术,以后才用于电子工业的。与传统的制版工业相比,用光刻胶制版,具有速度快、重量轻、工业相比,用光刻胶制版,具有速度快、重量轻、图案清晰等优点。尤其是与计算机配合后,更使印图案清晰等优点。尤其是与计算机配合后,更使印刷工业向自动化、高速化方向发展。刷工业向自动化、高速化方向发展。第六章第六章 感光性高分子感光性高分子6 光刻胶光刻胶是是微电子技术微电子技术中细微图形加工的关键材料之一。促中细微图形加工的关键材料之一。促进了大规模和超大规模集成电路的发展。进了大规模和
7、超大规模集成电路的发展。7 与传统的与传统的制版工业制版工业相比,用光刻胶制版,具有速度相比,用光刻胶制版,具有速度快、重量轻、图案清晰等优点。使印刷工业向自动快、重量轻、图案清晰等优点。使印刷工业向自动化、高速化。化、高速化。8感光油墨感光油墨9 感光性粘合剂、油墨、涂料是近年来发展较快感光性粘合剂、油墨、涂料是近年来发展较快的精细化工产品。与普通粘合剂、油墨和涂料等相的精细化工产品。与普通粘合剂、油墨和涂料等相比,前者具有固化速度快、涂膜强度高、不易剥比,前者具有固化速度快、涂膜强度高、不易剥落、印迹清晰等特点,适合于大规模快速生产。尤落、印迹清晰等特点,适合于大规模快速生产。尤其对用其他
8、方法难以操作的场合,感光性粘合剂、其对用其他方法难以操作的场合,感光性粘合剂、油墨和涂料更有其独特的优点。例如油墨和涂料更有其独特的优点。例如牙齿修补粘合牙齿修补粘合剂剂,用光固化方法操作,既安全又卫生,而且快速,用光固化方法操作,既安全又卫生,而且快速便捷,深受患者与医务工作者欢迎。便捷,深受患者与医务工作者欢迎。第六章第六章 感光性高分子感光性高分子10牙齿修补粘合剂牙齿修补粘合剂,用光固化方法操作,安全又卫生。,用光固化方法操作,安全又卫生。11 感光性高分子作为功能高分子材料的一个重要感光性高分子作为功能高分子材料的一个重要分支,自从分支,自从1954年由年由美国柯达公司的美国柯达公司
9、的Minsk等人开等人开发的发的聚乙烯醇肉桂酸酯聚乙烯醇肉桂酸酯成功应用于印刷制版以后,成功应用于印刷制版以后,在理论研究和推广应用方面都取得了很大的进展,在理论研究和推广应用方面都取得了很大的进展,应用领域已从电子、印刷、精细化工等领域扩大到应用领域已从电子、印刷、精细化工等领域扩大到塑料、纤维、医疗、生化和农业等方面,发展之势塑料、纤维、医疗、生化和农业等方面,发展之势方兴未艾。本章将较为详细地介绍光化学反应的基方兴未艾。本章将较为详细地介绍光化学反应的基础知识与感光性高分子的研究成果。础知识与感光性高分子的研究成果。第六章第六章 感光性高分子感光性高分子122 光化学反应的基础知识光化学
10、反应的基础知识2.1 光的性质和光的能量光的性质和光的能量 物理学的知识告诉我们,物理学的知识告诉我们,光是一种电磁波光是一种电磁波。在。在一定波长和频率范围内,它能引起人们的视觉,这一定波长和频率范围内,它能引起人们的视觉,这部分光称为部分光称为可见光可见光。广义的光还包括不能为人的肉。广义的光还包括不能为人的肉眼所看见的眼所看见的微波、红外线、紫外线、微波、红外线、紫外线、X 射线和射线和射射线线等。等。第六章第六章 感光性高分子感光性高分子13 现代光学理论认为,现代光学理论认为,光具有波粒二相性光具有波粒二相性。光的。光的微粒性是指光有量子化的能量,这种能量是不连续微粒性是指光有量子化
11、的能量,这种能量是不连续的。光的最小能量微粒称为光量子,或称的。光的最小能量微粒称为光量子,或称光子光子。光。光的波动性是指光线有的波动性是指光线有干涉、绕射、衍射和偏振干涉、绕射、衍射和偏振等现等现象,具有波长和频率。光的波长象,具有波长和频率。光的波长和频率和频率之间有之间有如下的关系:如下的关系:c为光在真空中的传播速度为光在真空中的传播速度(2.998108m/s)。第六章第六章 感光性高分子感光性高分子c(61)14第六章第六章 感光性高分子感光性高分子表表61 各种波长的能量各种波长的能量光线名称光线名称波长波长/nm能量能量/kJ光线名称光线名称波长波长/nm能量能量/kJ微微
12、波波10610710-110-2400299红外线红外线10310610-1102紫外线紫外线300399可见光可见光8001472005997001711001197600201X射线射线10-1106500239射线射线10-310815第六章第六章 感光性高分子感光性高分子表表62 化学键键能化学键键能化学键化学键键能键能/(kJ/mol)化学键化学键键能键能/(kJ/mol)化学键化学键键能键能/(kJ/mol)OO138.9CCl328.4CH413.4NN160.7CC347.7HH436.0CS259.4CO351.5OH462.8CN291.6NH390.8C=C607162.
13、2 光的吸收光的吸收 发生光化学反应必然涉及到光的吸收。光的吸发生光化学反应必然涉及到光的吸收。光的吸收一般用收一般用透光率透光率来表示,记作来表示,记作T,定义为,定义为入射到体入射到体系的光强系的光强I0与透射出体系的光强与透射出体系的光强I之比之比:如果吸收光的体系厚度为如果吸收光的体系厚度为l,浓度为,浓度为c,则有:,则有:第六章第六章 感光性高分子感光性高分子oIIT (64)lcIITo lglg(65)173.3 光化学定律光化学定律 光化学现象是人们很早就观察到了的。例如,光化学现象是人们很早就观察到了的。例如,染过色的衣服经光的照射而褪色;染过色的衣服经光的照射而褪色;卤化
14、银卤化银见光后会见光后会变黑;植物受到光照会生长(光合成)等等。变黑;植物受到光照会生长(光合成)等等。1817年,年,格鲁塞斯格鲁塞斯(Grotthus)和德雷珀和德雷珀(Draper)通过对光化学现象的定量研究,认识到并不是所有通过对光化学现象的定量研究,认识到并不是所有的入射光都会引起化学反应,从而建立了的入射光都会引起化学反应,从而建立了光化学第光化学第一定律,即一定律,即GtotthusDraper定律定律。这个定律表述。这个定律表述为:为:只有被吸收的光才能有效地引起化学反应。只有被吸收的光才能有效地引起化学反应。其其含意十分明显。含意十分明显。第六章第六章 感光性高分子感光性高分
15、子182.4 分子的光活化过程分子的光活化过程 从光化学定律可知,从光化学定律可知,光化学反应的本质是分子光化学反应的本质是分子吸收光能后的活化吸收光能后的活化。当分子吸收光能后,只要有足。当分子吸收光能后,只要有足够的能量,分子就能被活化。够的能量,分子就能被活化。分子的活化有两种途径,分子的活化有两种途径,一是分子中的电子受一是分子中的电子受光照后能级发生变化而活化,二是分子被另一光活光照后能级发生变化而活化,二是分子被另一光活化的分子传递来的能量而活化化的分子传递来的能量而活化,即分子间的能量传,即分子间的能量传递。下面我们讨论这两种光活化过程。递。下面我们讨论这两种光活化过程。第六章第
16、六章 感光性高分子感光性高分子192.4.1 弗朗克弗朗克康顿(康顿(FranckCondon)原理)原理 在讨论分子本身光活化之前,先介绍一下在讨论分子本身光活化之前,先介绍一下弗朗弗朗克克康顿原理康顿原理。该原理指出:无论在单原子分子还。该原理指出:无论在单原子分子还是多原子分子中,由于电子的跃迁是多原子分子中,由于电子的跃迁(10-5 s)比核运动比核运动(10-3s)快得多快得多(近近100倍倍)。因此,在电子跃迁后的瞬。因此,在电子跃迁后的瞬间,核几乎仍处于跃迁前的相同位置,并具有跃迁间,核几乎仍处于跃迁前的相同位置,并具有跃迁前的动量。也就是说,前的动量。也就是说,分子的活化过程,
17、仅考虑电分子的活化过程,仅考虑电子跃迁就可以了,不必顾虑核的运动子跃迁就可以了,不必顾虑核的运动。或者说,。或者说,电电子跃迁时,分子的构型是不变的子跃迁时,分子的构型是不变的。第六章第六章 感光性高分子感光性高分子202.4.2 分子的电子结构分子的电子结构 按量子化学理论解释,按量子化学理论解释,分子轨道是由构成分子分子轨道是由构成分子的原子价壳层的原子轨道线性组合而成的原子价壳层的原子轨道线性组合而成。换言之,。换言之,当两个原子结合形成一个分子时,参与成键的两个当两个原子结合形成一个分子时,参与成键的两个电子并不是定域在自己的原子轨道上,而是跨越在电子并不是定域在自己的原子轨道上,而是
18、跨越在两个原子周围的整个轨道两个原子周围的整个轨道(分子轨道分子轨道)上的。原子轨上的。原子轨道和分子轨道是电子波函数的描述。道和分子轨道是电子波函数的描述。第六章第六章 感光性高分子感光性高分子21 例如,两个相等的原子轨道例如,两个相等的原子轨道A和和B的相互作的相互作用后可形成两个分子轨道:用后可形成两个分子轨道:1AB2AB 其中,其中,一个分子轨道是成键的一个分子轨道是成键的,能量比原来的,能量比原来的原子轨道更低,因此更稳定;而原子轨道更低,因此更稳定;而另一个分子轨道是另一个分子轨道是反键的反键的,能量比原来的原子轨道高。这种情况可描,能量比原来的原子轨道高。这种情况可描绘如图绘
19、如图62所示。所示。第六章第六章 感光性高分子感光性高分子22图图62 轨道能量和形状示意图轨道能量和形状示意图AB1=AB+2=AB-AA-BB(孤立原子)(分子)(孤立原子)能量2()*1()2()*1()第六章第六章 感光性高分子感光性高分子23 分子轨道的形状亦描述于图分子轨道的形状亦描述于图62中。围绕原子中。围绕原子核之间的轴完全对称的成键轨道记作核之间的轴完全对称的成键轨道记作,称,称键。键。反键轨道记作反键轨道记作*,称,称*键。如当键。如当A和和B为为S轨轨道或道或P轨道时,形成的分子轨道即为轨道时,形成的分子轨道即为轨道与轨道与*轨道。由两个垂直于核轴而又彼此平行的轨道。由
20、两个垂直于核轴而又彼此平行的P轨道形轨道形成的分子轨道称为成的分子轨道称为轨道和轨道和*轨道。轨道。第六章第六章 感光性高分子感光性高分子24 形成成键轨道时,两个原子核之间电子存在的形成成键轨道时,两个原子核之间电子存在的几率高;而形成反键轨道时,两个原子核之间则有几率高;而形成反键轨道时,两个原子核之间则有一个电子存在几率为零的与核轴垂直的平面一个电子存在几率为零的与核轴垂直的平面。如果。如果两个原子轨道中,每一个都占有一个电子,或者一两个原子轨道中,每一个都占有一个电子,或者一个拥有两个电子而另一个轨道是空的,则在分子体个拥有两个电子而另一个轨道是空的,则在分子体系中,这两个电子都将占据
21、能量较低的成键分子轨系中,这两个电子都将占据能量较低的成键分子轨道。与孤立原子相比,体系将更稳定。这就是电子道。与孤立原子相比,体系将更稳定。这就是电子对共价键的分子轨道描述的基础。对共价键的分子轨道描述的基础。第六章第六章 感光性高分子感光性高分子252.4.3电子激发态的行为电子激发态的行为 一个激发到较高能态的分子是不稳定的,除了一个激发到较高能态的分子是不稳定的,除了发生化学反应外,它还将竭力尽快采取不同的方式发生化学反应外,它还将竭力尽快采取不同的方式自动地放出能量,回到基态。自动地放出能量,回到基态。单原子气体在低温、低压下一般只有一种回到单原子气体在低温、低压下一般只有一种回到基
22、态的方式,即发射能量的反向跃迁。基态的方式,即发射能量的反向跃迁。多原子分子和在适当压力下的单原子气体,其多原子分子和在适当压力下的单原子气体,其激发态就有多种失去激发能的途径,如:激发态就有多种失去激发能的途径,如:第六章第六章 感光性高分子感光性高分子26 (a)电子状态之间的非辐射转变,放出热能;电子状态之间的非辐射转变,放出热能;(b)电子状态之间辐射转变,放出荧光或磷光;电子状态之间辐射转变,放出荧光或磷光;(c)分子之间的能量传递。分子之间的能量传递。(d)化学反应。化学反应。显然,光化学研究感兴趣的是(显然,光化学研究感兴趣的是(c)和()和(d)两)两种转变。但这两种转变只有在
23、能量传递速度或化学种转变。但这两种转变只有在能量传递速度或化学反应速度大于其他能量消失过程速度时才能发生。反应速度大于其他能量消失过程速度时才能发生。第六章第六章 感光性高分子感光性高分子273 感光性高分子材料感光性高分子材料3.1 感光性高分子的分类感光性高分子的分类 感光性高分子材料经过感光性高分子材料经过50余年的发展,品种日余年的发展,品种日益增多,需要有一套科学的分类方法,因此提出了益增多,需要有一套科学的分类方法,因此提出了不少分类的方案。但至今为止,尚无一种公认的分不少分类的方案。但至今为止,尚无一种公认的分类方法。下面是一些常用的分类方法。类方法。下面是一些常用的分类方法。第
24、六章第六章 感光性高分子感光性高分子28(1)根据光反应的类型分类)根据光反应的类型分类 光交联型,光聚合型,光氧化还原型,光二光交联型,光聚合型,光氧化还原型,光二聚型,光分解型等。聚型,光分解型等。(2)根据感光基团的种类分类)根据感光基团的种类分类 重氮型,叠氮型,肉桂酰型,丙烯酸酯型等。重氮型,叠氮型,肉桂酰型,丙烯酸酯型等。(3)根据物理变化分类)根据物理变化分类 光致不溶型,光致溶化型,光降解型,光导光致不溶型,光致溶化型,光降解型,光导电型,光致变色型等。电型,光致变色型等。第六章第六章 感光性高分子感光性高分子29(4)根据骨架聚合物种类分类)根据骨架聚合物种类分类 PVA系,
25、聚酯系,尼龙系,丙烯酸酯系,环氧系,聚酯系,尼龙系,丙烯酸酯系,环氧系,氨基甲酸酯(聚氨酯)系等。系,氨基甲酸酯(聚氨酯)系等。(5)根据聚合物的形态和组成分类)根据聚合物的形态和组成分类 感光性化合物(增感剂)感光性化合物(增感剂)+高分子型,带感光高分子型,带感光基团的聚合物型,光聚合型等。基团的聚合物型,光聚合型等。图图63表明了上述分类间的相互关系。表明了上述分类间的相互关系。第六章第六章 感光性高分子感光性高分子30第六章第六章 感光性高分子感光性高分子图图63 感光性高分子分类感光性高分子分类 感光性高分子 光聚合型带感光基团的聚合物感光化合物+高分子型感电子束和X射线的高分子光聚
展开阅读全文